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Trapping the primes
Martin Hansen

1. A simple beginning

An infinite arithmetic progression may be prime free,

AP{4, 10} : 4, 14, 24, 34, 44, 54, 64, 74, 84, 94, . . . ,

or have a single prime as initial term,

AP{5, 10} : 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, . . . ,

or contain many primes,

AP{9, 10} : 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, . . . .

These examples are amongst those depicted in the ten-wide number grid
below in which only the primes within the respective sequences are shown,
composite terms being indicated with a dash.

AP{1, 10} y = 1 + 10n - 11 - 31 41 - 61 71 - - 101 . . .
AP{2, 10} y = 2 + 10n 2 - - - - - - - - - - . . .
AP{3, 10} y = 3 + 10n 3 13 23 - 43 53 - 73 83 - 103 . . .
AP{4, 10} y = 4 + 10n - - - - - - - - - - - . . .
AP{5, 10} y = 5 + 10n 5 - - - - - - - - - - . . .
AP{6, 10} y = 6 + 10n - - - - - - - - - - - . . .
AP{7, 10} y = 7 + 10n 7 17 - 37 47 - 67 - - 97 107 . . .
AP{8, 10} y = 8 + 10n - - - - - - - - - - - . . .
AP{9, 10} y = 9 + 10n - 19 29 - - 59 - 79 89 - 109 . . .

2. No primes at all

The observation that a particular infinite arithmetic progression contains
no primes at all is easily proven. For example, to prove that no number in
the infinite arithmetic progression AP{4, 10} is prime I could observe that
all terms in AP{4, 10} are of the form,

y = 4 + 10n, for n = 0, 1, 2, 3, . . . ,

and factorise to get
y = 2(2 + 5n),

which shows that these numbers are always divisible by 2. As the first term,
4, is also not prime, no term in AP{4, 10} is prime.
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3. Where lie the primes?

The ten-wide number grid shows that, with the exception of 2 and 5, all
primes must be in one of AP{1, 10}, AP{3, 10}, AP{7, 10} or AP{9, 10}.
Thus when a prime greater than 5 is divided by 10 the remainder must be
one of 1, 3, 7 or 9. Furthermore, when a positive integer other than 2 and
5 is divided by 10, if the remainder is 0, 2, 4, 5, 6 or 8, then that number
cannot be prime, a fact known to every school pupil in the land.

Interestingly, other than 2 and 5, of the ten available rows the primes
are trapped in 4 of them. Although the rows are of infinite extent, in terms
of knowing where the primes lie, there is a sense in which they are trapped in
40% of the available space as those rows head o↵ to infinity. This argument
can be made more rigorous by taking a limit as columns are added. A
natural development is to wonder if we can do better than the 40% of the
ten-wide number grid. We can. First, however, a small digression.

4. Can an all prime arithmetic progression exist?

At this point it’s worth noticing that none of the sequences above were
composed entirely of primes. It’s tempting to jump to the conclusion that
no sequence of the form y = a + 10n can be composed entirely of primes.
The conclusion would be correct, but pinning it down needs care. By way
of highlighting the need for caution, consider AP{13, 10},

y = 13 + 10n

= 3 + 10 + 10n

= 3 + 10(n+ 1) for n = 0, 1, 2, 3, . . . .

Thus AP{13, 10} is the sequence AP{3, 10} with the first term removed.
So, the possibility exists that by throwing away su�cient initial terms a
sequence remains composed entirely of primes. The search for an all prime
arithmetic progression is degenerating into a chase after the infinite; in any
given infinite arithmetic progression that contains primes, every time we
encounter a composite number we can throw away the sequence up to that
term, and hope that what comes next is an all prime arithmetic progression.

A strategy to kill the idea of the all prime infinite arithmetic progres-
sion is to show that all infinite arithmetic progressions contain an infinite
sequence of composite numbers.

Consider the generalised infinite arithmetic progression

y = a+ dn.
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As n increments through all non-negative integers it will take on the values
given by the infinite ‘kill’ sequence

k(m) = a+m+md

where m is a positive integer.

The corresponding terms in the arithmetic progression are of the form

y = a+ d(a+m+md)

= a+ ad+md+md

2

= (a+md)(1 + d),

which is composite.

5. An improved prime trap

Returning to the main thrust of the article, having dealt exhaustively with
the ten-wide prime trap, now consider one that is six-wide. Shown below,
it’s clear that, with the exception of 2 and 3, all primes lie in AP{1, 6} or
AP{5, 6}. Two out of the six rows gives this prime trap a rating 331/3%.

AP{1, 6} y = 1 + 6n - 7 13 19 - 31 37 43 - - 61 . . .
AP{2, 6} y = 2 + 6n 2 - - - - - - - - - - . . .
AP{3, 6} y = 3 + 6n 3 - - - - - - - - - - . . .
AP{4, 6} y = 4 + 6n - - - - - - - - - - - . . .
AP{5, 6} y = 5 + 6n 5 11 17 23 29 - 41 47 53 59 - . . .

6. A trap of prime-width

Constructing a trap that has a width which is a prime number is a disap-
pointing endeavour. By way of illustration, in the seven-wide trap shown,
once past the number 7, only the row that contained the 7 is prime free.
In general, a p-wide trap will have primes in all rows except AP{0, p}, once
past p.

AP{1, 7} y = 1 + 7n - - - - 29 - 43 - - - 71 . . .
AP{2, 7} y = 2 + 7n 2 - - 23 - 37 - - - - - . . .
AP{3, 7} y = 3 + 7n 3 - 17 - 31 - - - 59 - 73 . . .
AP{4, 7} y = 4 + 7n - 11 - - - - - 53 - 67 - . . .
AP{5, 7} y = 5 + 7n 5 - 19 - - - 47 - 61 - - . . .
AP{6, 7} y = 6 + 7n - 13 - - - 41 - - - - - . . .
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7. Coprime is the key

In 1837 Peter Dirichlet [1805–1859] proved that for any two positive coprime
integers, a and d, there are infinitely many primes of the form y = a+ dn.
An analysis of Dirichlet’s intricate proof is one of the highlights of Tom
Apostol’s classic book Introduction to Analytic Number Theory [1]. The
result confirms what the ten-, six- and seven-wide traps are suggesting: the
rows were the primes are trapped are those coprime to the width of the trap.
To be clear, the numbers coprime to ten are 1, 3, 7 and 9 corresponding
to the observation that the ten-wide trap placed the primes in AP{1, 10},
AP{3, 10}, AP{7, 10} and AP{9, 10}.

Dirichlet’s result also explains why a p-wide number grid was such a
poor trap of primes. For any given prime p, all positive integers less than
p are coprime to p. So the primes can and do appear in all rows except
that described by AP{0, p}, which is equivalent to AP{p, p}. As no prime
is coprime with itself, this is the only prime free row, once past p.

8. Euler’s totient function

In the developing quest to find which width of trap is most e↵ective in
relatively restricting the primes, it is the number of coprime integers to a
given width that is of interest. This is given by Euler’s totient function,
�(n), also often called Euler’s phi function. There is a delightfully simple
formula for �(n), when n is a prime power, pm,

� (pm) = p

m�1(p� 1).

(For a proof see, for example, [2].)

So, when n = 7,

�

�
71
�

= 71�1 ⇥ (7� 1) = 6,

which matches the observation that in the seven-wide number grid, the
primes are to be found in six of the seven rows, bar the exception of the
prime 7.

For two coprime integers, p and q, Euler’s totient function is multiplica-
tive.

�(pq) = �(p)⇥ �(q) for coprime p and q.

(For a proof, again see, for example, [2].)

So, when n = 10,

�(10) = �(2)�(5) = 4,
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which matches the observation that in the ten-wide trap, the primes are to
be found in four of the ten rows.

Here is a table of values of �(n) for 1  n  39.

+ 0 1 2 3 4 5 6 7 8 9
0 - 1 1 2 2 4 2 6 4 6
10 4 10 4 12 6 8 8 16 6 18
20 8 12 10 22 8 20 12 18 12 28
30 8 30 16 20 16 24 12 36 18 24

A much bigger table for 0 < n < 2460 is available at [3]. A good trap will
have a value of �(n) in the table that’s low in relation to those around it.
The entry �(6) = 2 was good because it seems to be the last occurrence
of a value of 2 in the table; a comment based on the observation that the
values in the table, on average, seem to be increasing. Assuming no more
occurrences of 4 or 6 are to be found in an extended table, we have the
following ‘best so far’ results;

�(6)

6
=

�(12)

12
=

�(18)

18
=

1

3

�
331/3%

�
.

Motivation to keep going is provided by the entry for �(30),

�(30)

30
=

4

15

�
262/3%

�
.

In a thirty-wide table all the primes greater than 7 will be trapped into
eight of the thirty available rows. It’s the best result yet but comes with a
caveat; how can we be sure that there’s not another n for which �(n) takes
the value of 8 further on, beyond where our table (however big) stopped?

9. Establishing boundaries

Reassurance is sought that the equation

n = �

�1(s) when s = 8

has the finite set of solutions that are visible in our table of values of �(n).
That is, n is precisely the set of solutions

n = {15, 16, 20, 24, 30}.

A lovely result, originally due to Gupta [4], more accessible in Coleman [5],
places bounds on the value of n for a given s that’s known to be in the table
of values for �(n).
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Theorem 1: Given that s is an even number, and p is prime, define A(s)
to be

A(s) = s

Y

p�1|s

p

p� 1
.

If n 2 �

�1(s), then s < n  A(s).

Proof: If �(n) = s then, from the definition of �(n) being the number of
positive integers less than n that are coprime to n, it’s clear that s < n. On
the other hand, if n is decomposed into its product of primes,

n = p

k0
0 p

k1
1 . . . p

kr
r

for the necessary primes, p0, p1, . . . , pr and positive integers, k0, k1, . . . ,
k

r

, then, because Euler’s totient function is multiplicative,

s = �(n)

= �

⇣
p

k0
0 p

k1
1 . . . p

kr
r

⌘

= �

⇣
p

k0
0

⌘
�

⇣
p

k1
1

⌘
. . .�

�
p

kr
r

�

= p

k0�1
0 (p0 � 1)pk1�1

1 (p1 � 1) . . . pkr�1
r

(p
r

� 1)

= p

k0
0

✓
p0 � 1

p0

◆
p

k1
1

✓
p1 � 1

p1

◆
. . . p

kr
r

✓
p

r

� 1

p

r

◆

= n

rY

i=0

p

i

� 1

p

i

) n = s

rY

i=0

p

i

p

i

� 1
.

A consequence of the formula � (pm) = p

m�1(p � 1) is that if p divides n

then p � 1 must divide �(n) and it follows that, for each p, p
i

� 1 divides
s. Hence we have n  A(s). ⇤

From Theorem 1, bounds of the solutions to the equation

n = �

�1(8)

are found by adding one to each of 1, 2, 4 and 8, the divisors of 8, to obtain
the prime numbers 2, 3 and 5, and the composite 9 which is thrown away.
Thus

A(8) = 8⇥ 2

1
⇥ 3

2
⇥ 5

4
= 30,
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therefore
8 < �

�1(8)  30,

and the desired reassurance has been obtained.

Theorem 1 has ‘holes in it’ in the sense that many integers, s, are not in
�

�1(n). For example, a consequence of the formula � (pm) = p

m�1(p�1) is
that if either p is odd or p = 2 and m > 1 then p

m�1(p� 1) is even. Hence,
for n � 3, �(n) cannot be odd. Some even numbers also are missing, the
first example being 14 for which I’ll provide a proof in Proposition 1. Other
low value examples are 26, 34, 38, 50 and 62, [6].

Proposition 1: �(n) = 14 has no solutions.

Proof: If a prime p is a divisor of n then p � 1 is necessarily a divisor of
�(n). The primes p for which p� 1 is a divisor of 14 are 2 and 3.

Case 1: Suppose that n = 2r; then

� (2r) = 2r�1 6= 14.

Case 2: Suppose that n = 3s; then

� (3s) = 3s�1 ⇥ 2 6= 14.

Case 3: Suppose that n = 2r3s; then

� (2r3s) = � (2r)⇥ � (3s) = 2r�1 ⇥ 3s�1 ⇥ 2 = 2r3s�1 6= 14.

Thus �(n) = 14 has no solutions. There is no width of number grid that
can trap the primes in 14 of the available rows. ⇤

10. How good a trap can be built?

Some stabs in the dark reveal that better traps than those for n = 6 and
n = 30 exist. For example, with n = 420,

�(420)

420
⇥ 100 = 226/7%.

The curious will wish to know how low this percentage can go. In a natural
manner the requirement has arisen to understand the function

f(n) =
�(n)

n

.

The percentage rating of a trap is then given by simply multiplying f(n) by
100. Partial illumination is provided by Theorem 2. I’ll prove this carefully



Page 8 M500 302

and in detail because it’s a thought-provoking result, and interested readers
may wish to revisit the steps to explore easily obtained improvements either
in general, or in specific cases, such as when n is divisible by 4 or when n

has some other property yet to be identified as of importance.

Theorem 2:
1

2
p
n

 �(n)

n

 1 for n � 1.

Proof: Without loss of generality, by the fundamental theorem of arith-
metic, let the positive integer n be written as a product of primes of the
form

n = 2k0
p

k1
1 . . . p

kr
r

for necessary odd primes, p1, . . . , pr and positive integers, k1, . . . , kr; k0 is
a non-negative integer. That is, k0 can be zero.

By the multiplicative property of Euler’s totient function,

�(n)

n

=
�

�
2k0
�
�

⇣
p

k1
1

⌘
�

⇣
p

k2
2

⌘
. . .�

�
p

kr
r

�

2k0
p

k1
1 p

k2
2 . . . p

kr
r

=

✓
2k0�1

2k0

◆ 
p

k1�1
1 (p1 � 1)

p

k1
1

!
. . .

✓
p

kr�1
r

(p
r

� 1)

p

kr
r

◆
. (1)

For an upper bound we can further write (1) as

�(n)

n

=

✓
2� 1

2

◆✓
p1 � 1

p1

◆
. . .

✓
p

r

� 1

p

r

◆

=

✓
1� 1

2

◆✓
1� 1

p1

◆✓
1� 1

p2

◆
. . .

✓
1� 1

p

r

◆

and use the inequality that for any prime p,

1� 1

p

 1

to obtain the stated upper bound, also noticing that when n is even this
can e↵ortlessly be improved to give

�(n)

n

 1

2
for even n.
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For a lower bound we can use in (1) the fact that for any odd prime, p,
p� 1 >

p
p. Thus (1) becomes

�(n)

n

�
✓
1

2

◆ 
p

k1�1
1

p
p1

p

k1
1

!
. . .

✓
p

kr�1
r

p
p

r

p

kr
r

◆

�
✓
1

2

◆ 
p

k1�0.5
1

p

k1
1

!
. . .

✓
p

kr�0.5
r

p

kr
r

◆
.

Now for k � 1, k � 0.5 � 0.5k,

�(n)

n

�
✓
1

2

◆ 
p

0.5k1
1

p

k1
1

!
. . .

✓
p

0.5kr
r

p

kr
r

◆

�
✓
1

2

◆✓
20.5k0

20.5k0

◆ 
1

p

0.5k1
1

!
. . .

✓
1

p

0.5kr
r

◆

�
✓
1

2

◆✓
20.5k0

p
n

◆
.

Finally, observing that for any non-negative integer value of k0, 20.5k0 � 1
yields the claimed lower bound. ⇤

The upper bound of Theorem 2 is not a surprise because of the fact
established by Euclid that there are an infinite number of primes. Each
time a prime is encountered f(n) is almost on the upper bound. In other
words,

f(p) =
�(p)

p

=
p� 1

p

= 1� 1

p

! 1 (i.e. 100%) as p ! 1.

The lower bound of Theorem 2 is tantalising for it leaves open, but unre-
solved, the possibility that as n becomes larger there are widths of number
grid to be found in which the primes become trapped in an ever decreasing
percentage of the rows of the n-wide table. Of course, just because Theo-
rem 2 established a lower bound, there’s no guarantee that values of �(n)
come close to it. This worry is exacerbated by the fact the lower bound
values seem well below the ‘best in their neighbourhood’ results previously
obtained. That is,

for n = 6,
�(6)

6
= 0.333, but

1

2
p
6
= 0.204;

for n = 30,
�(30)

30
= 0.267, but

1

2
p
30

= 0.091.
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As is so often experienced by those working with prime numbers, seeming
progress can turn out to be an illusion.

11. Primorials

The search for a good prime trap alighted upon the fact that the number
grids with widths associated with �(6) and �(30) were more restrictive than
neighbouring values. Since 1987, when Harvey Dubner [7] invented the
expression, 6 and 30 have become known as early consecutive terms of the
sequence of ‘primorials’. For the w

th prime number, p
w

# is defined as the
product of the first w primes.

p

w

# product value
p1# 2 2
p2# 2⇥ 3 6
p3# 2⇥ 3⇥ 5 30
p4# 2⇥ 3⇥ 5⇥ 7 210
p5# 2⇥ 3⇥ 5⇥ 7⇥ 11 2310

What is sought is a sequence within f(n) that ignores most of the terms
in f(n) that are displaying so much variation, and which instead steadily
decreases in value towards 0 as Theorem 2 suggested is possible. Primorials
are the key as Theorem 3 and its proof will show.

Theorem 3: For each primorial p
w

#,

f(p
w

#) =
� (p

w

#)

p

w

#

is smaller than itself for any lesser primorial.

Proof: Let an arbitrary primorial p
w

# with w � 2 be decomposed into its
product of primes, for any w � 2, p

w

# = p0p1 . . . pw. Then

� (p
w

#)

p

w

#
=

� (p0p1 . . . pw)

p0p1 . . . pw

=
� (p0p1 . . . pw�1)

p0p1 . . . pw�1
⇥ � (p

w

)

p

w

=
� (p

w�1#)

p

w�1
⇥ (p

w

� 1)

p

w

=
� (p

w�1#)

p

w�1
⇥
✓
1� 1

p

w

◆
;

therefore

� (p
w

#)

p

w

#
<

� (p
w�1#)

p

w�1
for any w � 2. ⇤
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12. Conclusion

A simple idea has been pursued a long way with a pleasingly minimalist set
of tools. Success has been achieved in trapping the primes into as small a
proportion of the positive integers as desired. However, some quick numer-
ical calculations show that the widths of the number grids required rapidly
become vast. For example,

�(p10#)

p10#
=

1021 870 080

6 469 693 230
= 0.158.

This primorial-width number grid has a lot of rows in which the primes
reside, even if the percentage rating of the trap is down to 15.8%.
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Problem 302.1 – A circle and a hyperbola
The circle has radius r and the hyperbola is
y = 1/x. What’s the area of the yellow (light
grey) part?

I (TF) cannot recall ever seeing this in any
textbook or other publication. Yet surely it
must be amongst the most natural of the var-
ious shapes that you would want to consider
as soon as you have learned how to calculate
areas by integrating functions. If r 

p
2, the

hyperbola can be ignored.
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