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Complex Fibonacci
Martin Hansen
One of the highlights of an undergraduate mathematician’s first year at
university must surely be the revelation that many functions are amenable
to being approximated by polynomials. In particular, there are the follow-
ing three marvellous results, sometimes referred to as ‘Taylor Polynomials’
(about x = 0) or ‘Maclaurin Series’ or ‘Power Series’.

Power Series Expansions (centred on x = 0)
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Pleasingly, any one of these results can be visualised by taking successive
partial sums of the series and plotting graphs. Below are shown approxima-
tions of the sine function with y = x, y = x�x3/3! and y = x�x3/3!+x5/5!.
As the degree of the approximating polynomial is increased, it better follows
the sine curve over a greater interval, centred on the origin.
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A key fact about power series is that any two (with the same centre)
can be added, multiplied or divided in the same way as polynomials. This
suggests that the exponential series can be manipulated in the following
adventurous manner when the index is a complex number, z = a + ib,
a, b 2 R, i2 = �1:
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= ea(cos b+ i sin b).

The real exponential function is thus extended into the world of complex
numbers via the beautiful result known as Euler’s Relation.

Euler’s Relation

eib = cos b+ i sin b.

When b = ⇡ Euler’s Relation yields e⇡i = �1, usually written as

e⇡i + 1 = 0

and often referred to as the most beautiful equation in all of mathematics.
Of course, when b = 0 the complex exponential function is identical to the
real exponential function. In this case, a real function has been extended
into the complex realm by a simple multiplication of cos b + i sin b. It is
natural to wonder if there are other functions extendable in this sort of
way.

A drawback for beginners in trying to appreciate what has been achieved
with the extension of the exponential from the real to the complex is that
the complex exponential function is tricky to visualise. Its domain is two
dimensional as is its codomain. Visualising four dimensions simultaneously
does not come naturally to the average person. In this article I wanted to
look at a similar extension to a well-known function but one which yields
results more easily visualised.
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The function I have in mind is that associated with the Fibonacci num-
bers. These are usually defined by means of the simple recursive formula,

F
n+2

= F
n+1

+ F
n

, n 2 Z, n � 0,

along with two initial terms F
0

= 0 and F
1

= 1. It gives rise to the ‘world
famous’ sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

This has so many astounding mathematical properties that a scholarly jour-
nal, The Fibonacci Quarterly, is devoted to ongoing research of this and
related sequences such as those of Lucas, Jacobsthal, and Pell.

The domain can be extended readily enough to include the negative
integers. The resulting ‘extended leftward’ sequence is

. . . ,�21, 13,�8, 5,�3, 2,�1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .

Part of the fascination of the Fibonacci sequence stems from the fact that
it has a closed form formula for term n that, although we are working with
the integers, contains fractions and square roots ‘all over the place’. Yet it
will yield an integer output no matter what integer input is assigned to n.

The Binet Formula for the Fibonacci Sequence (Version 1)
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Having extended the domain of the Fibonacci sequence to include the
negative integers, the Binet formula provides an opportunity to go further
and extend it to the reals. Of course, 1 �

p
5 is negative, and so for some

values of n its powers will be complex numbers. When I reached for my
calculator (a Casio Classwiz fx-991EX in complex number mode) it gave,
for n = 0.5,
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= 0.569� 0.352 i.
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However, it could not cope with the same calculation presented in the form
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In retrospect, this was a blessing; rather than reaching for more powerful
software a deeper understanding was called for.

The key idea is to find a way of separating the real part of the calculation
from the imaginary part and an ingenious way to do this is to be found in
a paper from 1968 in The Fibonacci Quarterly by Alan Scott, [1].

To understand Scott’s result we first need to look more carefully at ei⇡ =
�1. Values of the function f(b) = eib are best understood by visualising
them as being on the unit circle in the complex plane. The variable b then
has the interpretation of being the angle (in radians) of (anticlockwise)
rotation, where the positive real axis corresponds to an angle of 0. The
diagram on page 4 shows a few points plotted for b between �⇡ and ⇡
radians. The crucial point being made by this diagram is that the result
can be equally well written as e�i⇡ = �1. In fact, given any point on the
unit circle, a rotation of 2⇡k (about the centre) for any integer k gives the
same point.

In general, we have that ei(2k+1)⇡ = �1, k 2 Z.
The digression over, we can pick up the main thread of the article.
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From this observation we obtain

The Binet Formula for the Fibonacci Sequence (Version 2)
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Now, we could recall here that ei⇡ = �1 (so beautiful!) but, to match
the result my calculator produced earlier, let’s use e�i⇡ = �1 instead:

(�1)�n =
�
e�⇡

��n

= ei⇡n = cos(⇡n) + i sin(⇡n).

Thus is obtained a third version of the Binet formula for the Fibonacci
numbers.

The Binet Formula for the Fibonacci Sequence (Version 3)
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These can be interpreted as parametric equations where x is the real compo-
nent and y the imaginary, and plotted as a smooth continuous curve where
n is considered to be a variable over R.

Such a plot for non-negative real n is presented below. The diagram is
of the two dimensional output from the Fibonacci function with one dimen-
sional real number domain and the ease with which it can be understood
is aided considerably by knowing the integer sequence from which it was
derived. Each time the curve crosses the real number axis as we move along
the curve, the domain has integer value incremented by 1. So, three dimen-
sions can be easily visualised in spite of having only the two dimensional
codomain plot to study.

The loop from n = 1 to n = 2 is an attractive feature corresponding
to F

1

= F
2

= 1 and, indeed, it can be viewed as a part of the interesting
transition between the alternating sign of the integer outputs when n is a
negative integer and the all positive integer outputs when n is a positive
integer. The plot for the non-positive real n is given on the next page.

The earliest plots of this Fibonacci curve that I know of occurred in
1974 [2]. For any reader wishing to investigate the curve further, many
clever mathematical results are to be found in a 1988 paper [3].
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Problem 312.1 – Product
Tony Forbes
Show that

P
N

(x) =
NY

i=1

4i+ x

4i+ 1

4i+ 3

4i+ 2
, � 1 < x < 1,

converges to something non-zero as N ! 1 if and only if x = 0.
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