3.1 Start Up

Use the table of Squares and Cubes from 1 to 99 to determine;
(i)
$\left(\frac{21}{26}\right)^{2}=\frac{441}{}$
$\left(\frac{49}{34}\right)^{2}=\frac{}{1156}$
$\left(\frac{32}{91}\right)^{2}=$
(iv)
(v)
(vi)
$\left(\frac{17}{31}\right)^{3}=\xrightarrow{4913}$
$\left(\frac{7}{29}\right)^{3}=\frac{}{24389}$
$\left(\frac{63}{50}\right)^{3}=$
(vii)
(viii)
(ix)
$\left.\left(\frac{324}{625}\right)^{0.5}=\frac{18}{4356}\right)^{0.5}=\frac{196}{66} \quad\left(\frac{6241}{9801}\right)^{0.5}=\square$
(x)
(xi)
(xii)

$$
\left(\frac{81}{25}\right)^{\frac{1}{2}}=
$$

$$
\left(\frac{1}{100}\right)^{\frac{1}{2}}=-\quad\left(\frac{2116}{2601}\right)^{\frac{1}{2}}=
$$

(xiii)
(xiv)
(xv)
$\left(\frac{8}{27}\right)^{\frac{1}{3}}=-\quad\left(\frac{4096}{24389}\right)^{\frac{1}{3}}=-\quad\left(\frac{857375}{884736}\right)^{\frac{1}{3}}=$

3.2 Volume Scale Factor (vsf)

For any two similar solids:

$$
\text { volume scale factor }=(\text { length scale factor })^{3}
$$

which can also be expressed as:

$$
\text { length scale factor }=\sqrt[3]{\text { volume scale factor }}
$$

3.3 Example

The above two similar cuboids are shown with the same orientation.
(i) Find the lengths marked p, q and r.
(ii) How many times more surface area has the larger cuboid than the smaller?

3.4 Exercise

$$
\text { Marks Available : } 56
$$

Question 1

The above two similar cuboids are shown with the same orientation.
(i) Find the lengths marked a, b and c.
(ii) How many times more surface area has the larger cuboid than the smaller ?

Question 2

The above two similar cuboids are shown with the same orientation.
(i) Find the lengths marked x, y and z.
(ii) How many times more surface area has the larger cuboid than the smaller?

Question 3

The above two similar cuboids are shown with the same orientation.
(i) Find the lengths marked u, v and w.
(ii) How many times more surface area has the larger cuboid than the smaller ?

Question 4

(i) Are all squares similar?

YES / NO
In other words, Are all squares the same shape ?
(ii) A smaller square has an area of $27 \mathrm{~cm}^{3}$.

A larger square has a side $\frac{5}{3}$ times greater than the small square.
What is the area of the larger square ?
Hint : lsf $=\frac{5}{3} \quad$ asf $=(l s f)^{2} \quad A_{B I G}=A_{S M A L L} \times a s f$

Question 5

Cuboid G measures 14 cm by 21 cm by 28 cm .
Cuboid H measures 4 cm by 6 cm by 8 cm .
(i) Complete the following to show that the two cuboids similar.
$\square=\frac{}{6}=\square$
All cancel down to
[2 marks]
(ii) What is the length scale factor, greater than 1 , of the similarity ?

$$
l s f=
$$

(iii) What is the area scale factor of, greater than 1, of the similarity?

$$
a s f=
$$

(iv) What is the volume scale factor, greater than 1 , of the similarity?

$$
v s f=
$$

(v) Calculate;
(a) $V_{B I G}$
[1 mark]
(b) $V_{S M A L L}$
[1 mark]
(c) $\quad V_{S M A L L} \times v s f$
[1 mark]
(d) Comment

Question 6

Are all rectangles similar?
YES / NO
In other words, Are all rectangles the same shape?

Question 7

(i) Are all spheres similar? YES / NO
(ii) A smaller sphere has a volume of $32 \mathrm{~cm}^{3}$.
A larger sphere has a radius $\frac{5}{2}$ times greater than the small sphere. What is the volume of the larger sphere?

Hint : llsf $=\frac{5}{2} \quad v s f=(l s f)^{3} \quad V_{B I G}=V_{S M A L L} \times v s f$

Question 8

A larger cuboid has lengths that are $\frac{4}{3}$ times longer than a similar smaller cuboid. The smaller cuboid measures 60 cm by 66 cm by 42 cm .
What are the measurements of the larger cuboid ?
\qquad by \qquad by \qquad

Question 9

A larger cuboid has lengths that are $\frac{7}{4}$ times longer than a similar smaller cuboid. The smaller cuboid measures 8 cm by 40 cm by 44 cm .
What are the measurements of the larger cuboid?
\qquad by \qquad by \qquad

Question 10

(i) Are all triangles similar? YES / NO
[1 mark]
(ii) Are all right angled triangles similar ?
YES / NO
[1 mark]
(iii) Are all equilateral triangles similar ?

Question 11

Two similar hexagonal prisms are shown below.
An edge of 14 cm on the smaller corresponds to an edge of length 21 cm on the larger.

(i) What is the length scale factor, greater than 1 , of the similarity?

$$
l s f=
$$

(ii) What is the area scale factor, greater than 1 , of the similarity?

$$
a s f=
$$

(iii) What is the volume scale factor, greater than 1 , of the similarity?
\qquad
(iv) The volume of the smaller hexagonal prism is $40 \mathrm{~cm}^{3}$.

Calculate the volume of the larger hexagonal prism.

Question 12

The two cuboids shown below are similar.

(i) What is the length scale factor, greater than 1 , of the similarity ?

$$
l s f=
$$

(ii) Find the height of the upper cuboid, marked with a question mark.
[1 mark]
(iii) Find the missing length on the lower cuboid, marked with a question mark.

Question 13

Each face of a smaller cube has an area of $36 \mathrm{~cm}^{2}$
A larger cube has edges that are 10 times longer.
What is the volume of the larger cube?

Question 14

The two cuboids shown below are similar.

(i) What is the length scale factor, greater than 1 , of the similarity ?

$$
l s f=
$$

(ii) Find the unknown length of the right cuboid, marked with a question mark.
[1 mark]
(iii) Find the unknown height of the left cuboid, marked with a question mark.
[1 mark]

Question 15

A 250 ml can of coke is similar to a 500 ml can of coke.
Explain why radius of the larger can is NOT double that of the smaller.

