4.4 Homework

GCSE Mathematics
Ratio and Similarity
Marks Available : 40

Question 1

Do not use a calculator
(i)

$$
\left(\frac{3}{2}\right)^{2}=\frac{9}{}
$$

(ii)
$\left(\frac{8}{13}\right)^{2}=\frac{}{169}$
(iii)
$\left(\frac{5}{6}\right)^{2}=$
(iv)

$$
\left(\frac{2}{3}\right)^{3}=\frac{8}{}
$$

(v)
$\left(\frac{5}{7}\right)^{3}=\frac{}{343}$
(vi)
(ix)

$$
\left(\frac{25}{4}\right)^{0.5}=\frac{5}{}
$$

(viii)
$\left(\frac{7}{4}\right)^{3}=$ \qquad
(vii)

$$
\left(\frac{49}{196}\right)^{0.5}=\frac{}{14}
$$

$$
\left(\frac{36}{121}\right)^{0.5}=
$$

\qquad
(x)

$$
\left(\frac{9}{64}\right)^{\frac{1}{2}}=
$$

(xi)
(xii)
$\left(\frac{1}{144}\right)^{\frac{1}{2}}=-\quad\left(\frac{196}{169}\right)^{\frac{1}{2}}=$ \qquad
(xiii)

$$
\left(\frac{8}{27}\right)^{\frac{1}{3}}=
$$

(xiv)
(xv)
(xvi)

$$
\left(\frac{40}{9}\right)^{2}=
$$

$$
\left(\frac{1}{1000}\right)^{\frac{1}{3}}=
$$

(xvii)

$$
\left(\frac{5}{4}\right)^{3}=
$$

(xviii)

$$
\left(\frac{64}{125}\right)^{\frac{1}{3}}=
$$

$$
\left(\frac{5}{6}\right)^{0}=
$$

Question 2

To square root the following fractions, first cancel down by repeated division of the numerator and denominator by $2,3,5$ or 10 .

Example

$\sqrt{\frac{484}{64}}=\sqrt{\frac{242}{32}}=\sqrt{\frac{121}{16}}=\frac{11}{4}$

Do not use a calculator
(i)
$\sqrt{\frac{27}{12}}=\sqrt{-}=$
Hint : Divide by 3
[2 marks]
(ii)
$\sqrt{\frac{98}{50}}=\sqrt{-}=-$
(iii)
$\sqrt{\frac{980}{720}}=\sqrt{-}=\sqrt{-}=$
Hint : First, divide by 10
[2 marks]
(iv)
$\sqrt{\frac{45}{80}}=\sqrt{-}=-$
(v)
$\sqrt{\frac{3630}{750}}=\sqrt{-}=\sqrt{\square}=\square$
(vi)
$\sqrt{\frac{882}{162}}=\sqrt{\square}=\sqrt{\square}=\sqrt{\square}=$

Question 3

You may use a calculator

Here are two similar triangles.
$A B$ corresponds to $P Q$.
$B C$ corresponds to $Q R$.

Diagram NOT accurately drawn

Find the value of
(a) x
(b) y
(c) z

Question 4

You may use a calculator
Here are three similar triangles.

Diagram NOT accurately drawn

Find the value of
(a) w
(b) x
(c) y

