Lesson 5

5.1 Congruent Shapes

Geometric figures with both the same *shape* and *size* are said to be **CONGRUENT**.

If two shapes are *congruent* then it will be possible to transform one on top of the other by means of translation, rotation and reflection.

If one copy of a shape can be translated (slid) across the page and then rotated as necessary to exactly cover another, the two shapes are **DIRECTLY** *congruent*.

If a reflection (or flip) has to be used, the two shapes are **INDIRECTLY** congruent.

Example

Consider the box of shapes.

(i) Which shape is *directly congruent* with A ?Shade in this pair of shapes the same colour.

[2 marks]

(ii) Which shape is *indirectly congruent* with *H*? Shade in this pair of shapes a different same colour.

[2 marks]

(iii) Two other shapes are *directly congruent*. Which two ?Shade in this pair of shapes, both in the same colour used in part (i).

[2 marks]

5.2 Exercise

Marks Available : 6

Question 1

For the following shapes, shade in those that are *directly congruent* in one colour and, in a different colour, those that are *indirectly congruent*.

[6 marks]

5.3 Exercise : Test Revision

Marks Available : 42 You may use a calculator

Question 1

For the similar rectangles *A* and *B*, shown below, find the lengths marked *x* and *y* given that the length scale factor (greater than 1) of the similarity is $\frac{7}{4}$

[2 marks]

An elastic band of length 15 cm is stretched with length scale factor $\frac{9}{3}$. What is the length of the stretched band ?

[2 marks]

Question 3

When made wet a 55 cm piece of string shrinks with length scale factor $\frac{3}{5}$. What is the length of the shrunk string ?

[2 marks]

Question 4

Two rectangles are similar with length scale factor $\frac{13}{4}$ The smaller measures 8 cm by 12 cm. What are the measurements of the larger ?

[2 marks]

Question 5

For the similar triangles F and X, shown below, find the length scale factor (greater than 1) of the similarity and also the lengths marked w and k (Your answers may involve decimals !)

[3 marks]

Cancel down these fractions as far as possible by repeated division of the numerator and denominator by 2, 3, 5 or 10.

(i)	(ii)
14	35
4	15
(iii)	(iv)
21	28
15	84

[4 marks]

Question 7

For the similar rectangles D and J, shown below, find the length scale factor (greater than 1) of the similarity (cancel down the fraction) and also the length marked z

^{[3} marks]

Question 8

For the similar rectangles F and U, shown below, find the length scale factor (greater than 1) of the similarity (cancel down the fraction) and also the length marked s

[3 marks]

Simplify each of the following

Rectangles T and V are similar. Find the length marked c

[3 marks]

The shapes W and C are similar. Find the length marked x

[3 marks]

The above two similar cuboids are shown with the same orientation.

(i) Find the lengths marked x, y and z.

[3 marks]

(ii) How many times more surface area has the larger cuboid than the smaller ?

[1 mark]

Pentagon *K* is mathematically similar to pentagon *C*. Calculate the lengths of the sides marked *a*, *b*, *x*, and *y*.

[4 marks]

Quadrilaterals ABCD and PQRS are similar.

Find the value of (a) *x*,

[3 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk