

Functions I

Lesson 1

GCSE Mathematics Functions I

1.1 What is a function ?

At a simple level, a function is a mathematical rule that "does things to numbers". If it is helpful, a function can be given a name. Here is a description of the function called f.

$$f(x) = 1 + \sqrt{x}, \quad x \in \mathbb{Z}, \quad x \ge 0$$

Now, suppose I have the number 25.

What does function *f* do to the number 25 ? Teaching Video : <u>http://www.NumberWonder.co.uk/Video/v9002(1).mp4</u>

Ś

[2 marks]

1.2 For You To Do

Consider the function, $f(x) = x^2 + 1$, $x \in \mathbb{R}$ Calculate,

(i) $f(7)$ (ii

- (iii) f(11) (iv) f(0)
- (v) f(5) (vi) f(-5)
- (vii) f(-6) (viii) $f(\sqrt{3})$

[8 marks]

Now turn over the page to see if you got these questions correct.

1.3 Answers to For You To Do

In words the function $f(x) = x^2 + 1$ takes the number it is given and "squares it and adds one"

When given the number 7, this function it will square 7 and add 1

$$f(x) = x^{2} + 1$$

$$f(7) = 7^{2} + 1$$

$$= 49 + 1$$

$$= 50$$

Repeating this for all of the questions gives the following answers,

(i)	f(7) = 50	(ii)	f(1) = 2	
(iii)	f(11) = 122	(iv)	f(0) = 1	
(v)	f(5) = 26	(vi)	f(-5) = 26	because $(-5)(-5) = 25$
(vii)	f(-6) = 37	(viii)	$f\left(\sqrt{3}\right) = 4$	because $(\sqrt{3})(\sqrt{3}) = 3$

Finally, notice the domain, $x \in \mathbb{R}$

Any Real Number may be used as input into the "square and adds one" function. The Real Numbers are "all the numbers you officially know about". This includes Integers, \mathbb{Z} , Rational Numbers, \mathbb{Q} , and Irrational Numbers.

There are lots of numbers that you "don't officially know about" ! Further A-Level Mathematicians, for example, know of Complex Numbers, \mathbb{C} .

"It is my treat-converter function machine. However many cat treats I input, the machine outputs TWICE that many dog biscuits. Isn't that cool?"

It's not just numbers that can go into functions ! (For example, later on we'll input algebraic expressions)

[8 marks]

1.4 Exercise

Marks Available : 40

Question 1

Function f is described as,

 $f(x) = 4x + 13, \qquad x \in \mathbb{Z}$

Write down the value of,

(i) f(1) (ii) f(2) (iii) f(3)

(iv) f(0) (v) f(10) (vi) f(-2)

[3 marks]

What does the domain, $x \in \mathbb{Z}$, tell you about this function ?

(F

[1 mark]

Question 2

Function g is described as,

$$g(x) = \frac{x^2}{2} \qquad x \in \mathbb{Z}$$

Write down the value of,

(i) g(1) (ii) g(-1) (iii) g(4)

(iv) g(10) (v) g(0) (vi) g(-3)

[3 marks]

The range of this function, the numbers that can occur as answers, are all non negative. Why this is ?

(F

[1 mark]

Function *h* is the function described by, $h(x) = 7 + \sqrt{x}, x \in \mathbb{R}, x \ge 0$ Write down the value of,

(i) h(100) (ii) h(4) (iii) h(81)

(iv) h(0) (v) h(400) (vi) h(121)

[3 marks]

Explain why the restriction is placed upon the domain that only numbers greater than or equal to zero can be allowed into this function.

(F

[1 mark]

Question 4

Given that, m(x) = 14 + 3x, $x \in \mathbb{Z}$, write down the value of, (i) m(1) (ii) m(-1) (iii) m(6)

(iv) m(9) (v) m(-3) (vi) m(-5)

[3 marks]

Question 5

Given that, n(x) = 10 - 2x, $x \in \mathbb{R}$, write down the value of, (i) n(4) (ii) n(0) (iii) n(-2)

(iv)
$$n(11)$$
 (v) $n(-8)$ (vi) $n\left(\frac{1}{2}\right)$

[3 marks]

Consider the function, $d(x) = \frac{6}{x}$, $x \in \mathbb{R}$, $x \neq 0$ Write down the value of, (i) d(3) (ii) d(6) (iii) d(12)(iv) d(-2) (v) d(0.1) (vi) d(-0.1)

[3 marks]

Explain the restriction $x \neq 0$ on the domain. In other words, why is the number zero is not allowed into this function ?

F

[1 mark]

Question 7

The function e is given by, $e(x) = \sqrt{4x + 1}$, $x \in \mathbb{R}$, $x \ge -0.25$ Write down the value of, (i) e(0) (ii) e(2) (iii) e(6)

(iv) e(12) (v) $e\left(\frac{3}{4}\right)$ (vi) $e\left(-\frac{1}{4}\right)$

[3 marks]

Question 8

The function k is given by, $k(x) = 4x^2 + 3$, $x \in \mathbb{R}$ Write down the value of, (i) k(1) (ii) k(-1) (iii) k(2)

(iv) k(-2) (v) k(5) (iv) k(-5)

[3 marks]

The quadratic function A is, $A(x) = 2x^2 + 3x - 1$, $x \in \mathbb{R}$ Write down the value of, (i) A(1) (ii) A(0) (iii) A(5)

(iv) A (10) (v) A (100) (iv) A (-1)

[3 marks]

Question 10

The function *H* has the definition, $H(x) = (2x + 5)(3x + 4), x \in \mathbb{Z}$ Write down the value of, (i) H(1) (ii) H(0) (iii) H(-2)

(iv) H(-1) (v) H(2) (vi) H(-3)

[3 marks]

Question 11

This question is about a mystery function, *M*. We can drop numbers into *M*, and see what it does to those numbers. If I drop the numbers 0, 1, 2, 3, 4 and 5 into *M* then 1, 4, 7, 10, 13 and 16 come out.

In other words M(0) = 1 M(1) = 4 M(2) = 7 M(3) = 10 M(4) = 13and M(5) = 16

Suggest a rule that M is applying.

It must turn all five input numbers into the five output numbers. If your rule only works on one or two numbers, it's no good !

[3 marks]

Here is another "guess the rule" question.

	N(0)	=	- 1
	N(1)	=	0
	N (2)	=	3
	N (3)	=	8
	N(4)	=	15
and	N (5)	=	24

Suggest a function that N could be.

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk