Lesson 5

5.1 Composite Functions (Algebra Questions)

Two functions, *f* and *g* given by,

 $f(x) = 5x - 2 \qquad x \in \mathbb{R}$ $g(x) = 4x + 1 \qquad x \in \mathbb{R}$ What is fg(2)?

[2 marks]

In this Lesson the function inputs will be chunks of algebra rather than just numbers. Work out fg(2z)

Ē

[2 marks]

Now try to work out fg(3z + 1)

(F

[2 marks]

My answer is over the page. Turn over to see if you concur.

$$f g (3z + 1) = f (4 (3z + 1) + 1)$$
 because $g(x) = 4x + 1$
= $f (12z + 4 + 1)$
= $f (12z + 5)$
= $5 (12z + 5) - 2$ because $f(x) = 5x - 2$
= $60z + 25 - 2$
= $60z + 23$

[2 marks]

5.2 Exercise

Marks Available: 80

Question 1 Let *p* and *q* be the functions;

in ation a

p(x) = 3x + 7	$x \in \mathbb{R}$
q(x) = 10x + 9	$x \in \mathbb{R}$

Evaluate each of the following;

(i) p q (0) (ii) p q (1)

(iii)
$$p q (5z)$$
 (iv) $p q (2z+3)$

(v) q q (-1) (vi) p p p (-3)

[6 marks]

Let *h* and *d* be the functions;

(i)	<i>h d</i> (4)		(ii)	h d (-1)
Evaluat	e each of the t	following;		
		d(x) = 5x + 9	x e	$\equiv \mathbb{R}$
		h(x) = 3x + 7	<i>x</i> €	\mathbb{R}

(iii) h d (4z) (iv) h d (3z+3)

[4 marks]

Question 3

Let f and g be the functions;

f(x) = 6x - 5	x	$\in \mathbb{R}$
g(x) = 2x + 11	x	$\in \mathbb{R}$
Evaluate each of the following;		
$(\mathbf{i}) \qquad gf(0)$	(ii)	gf(2)

f(3z+1)	
;	f(5z+1)

[4 marks]

 $f(x) = x + 3 \qquad x \in \mathbb{R}$ $g(x) = 4x \qquad x \in \mathbb{R}$

Find fg(x)

[2 marks]

Question 5

f(x) =	3x + 2	х	∈	\mathbb{R}
g(x) =	5x - 4	x	∈	$\mathbb R$

Find an expression for gf(x) that does not contain any brackets.

[2 marks]

Question 6

 $f(x) = 7x - 5 \qquad x \in \mathbb{R}$ $g(x) = 10 - x \qquad x \in \mathbb{R}$

Find an expression for fg(x) that does not contain any brackets.

[2 marks]

Question 7

 $f(x) = x^{2} + 5 \qquad x \in \mathbb{R}$ $g(x) = 2x - 1 \qquad x \in \mathbb{R}$

Find an expression for fg(x) that does not contain any brackets.

[2 marks]

$$f(x) = 7x - 6 \qquad x \in \mathbb{R}$$
$$g(x) = \frac{3}{x + 4} \qquad x \in \mathbb{R}, \ x \neq -4$$

(i) Find an expression for fg(x) that does not contain any brackets.

[2 marks]

(ii) Find an expression for gf(x) that does not contain any brackets.

[2 marks]

Question 9

(i)

f(x) = 5x + 2	x	∈	\mathbb{R}
g(x) = 4x - 9	x	∈	\mathbb{R}
Calculate $fg(3)$			

[2 marks]

```
(ii) Find an expression for fg(x) that does not contain any brackets.
```

[2 marks]

(iii) Now use your part (ii) formula to calculate fg(3) again. Check it agrees with your answer to part (i) !

[1 mark]

(i)

$$f(x) = x^{2} - 6 \qquad x \in \mathbb{R}$$
$$g(x) = 3x + 1 \qquad x \in \mathbb{R}$$
Show carefully that $fg(x) = 9x^{2} + 6x - 5$

[2 marks]

(ii) Hence solve the equation f g(x) = 43

[2 marks]

Question 11

 $f(x) = 2x^{2} + 3x - 4 \qquad x \in \mathbb{R}$ $g(x) = x - 5 \qquad x \in \mathbb{R}$ (i) Show carefully that $fg(x) = 2x^{2} - 17x + 31$

[2 marks]

(ii) Hence solve the equation f g(x) = 10 - 4x

[2 marks]

Let *u* and *v* be the functions;

$u(x) = x^2 - 5$	x	$\in \mathbb{R}$
v(x) = 5x + 2	x	$\in \mathbb{R}$
Evaluate each of the following;		
(i) $v u (3)$	(ii)	v u (2)

(iii) v u (5z)

(iv) v u (2z+1) HINT : FOIL

[8 marks]

Question 13

Let *m* and *n* be the functions,

m(x) = 9x - 5	<i>x</i> ∈	\mathbb{R}
$n(x) = \sqrt{x-7}$	<i>x</i> ∈ .	$\mathbb{R}, x \ge 7$
Evaluate each of the following,		
(i) $m n (8)$	(ii)	m n (56)

(iii)
$$mn(z^2 + 7)$$
 (iv) $mn(4z^2 + 7)$

[8 marks]

$$f(x) = 3x + 7 \qquad x \in \mathbb{R}$$
$$g(x) = \frac{5}{x - 2} \qquad x \in \mathbb{R}, \ x \neq 2$$

(i) Find an expression for fg(x) that does not contain any brackets.

[2 marks]

(ii) Find an expression for gf(x) that does not contain any brackets.

[2 marks]

Question 15

 $f(x) = 4x + 5 \qquad x \in \mathbb{R}$ $g(x) = 3x - 7 \qquad x \in \mathbb{R}$

(i) Calculate fg(2)

[2 marks]

(ii) Find an expression for fg(x) that does not contain any brackets.

[2 marks]

(iii) Now use your part (ii) formula to calculate fg(2) again. Check it agrees with your answer to part (i) !

[1 mark]

$$f(x) = x^{2} + 8 \qquad x \in \mathbb{R}$$
$$g(x) = 2x - 5 \qquad x \in \mathbb{R}$$

(i) Show carefully that
$$fg(x) = 4x^2 - 20x + 33$$

[2 marks]

(**ii**) Hence solve the equation fg(x) = 17

[2 marks]

Question 17

$f(x) = 3x^2 - 2x + 5$	$x \in \mathbb{R}$
g(x) = x + 4	$x \in \mathbb{R}$

(i) Show carefully that $fg(x) = 3x^2 + 22x + 45$

[2 marks]

(ii) Hence solve the equation fg(x) = 27x + 43

[2 marks]

Let f and g be the functions;

f(x) = 7 - 6x	<i>x</i> ∈	\mathbb{R}
g(x) = 5x + 7	$x \in$	\mathbb{R}
Evaluate each of the following;		
(i) $fg(-1)$	(ii)	fg(-0.2)

(iii)
$$fg(4z + 1)$$
 (iv) $fg(1 - z^2)$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk (Questions 4 to 11, and 14 to 17 JCA)