Lesson 8

8.1 Inverse Functions without Flow Diagrams

There is a more mathematical method that can be used to find the inverse of a function. Using it means solutions are less cluttered.

There are also functions which cannot easily be represented by flow diagrams. The mathematical method allows their inverses to be found also.

8.2 Example

$$f(x) = \frac{5}{2x} + 6, \quad x \in \mathbb{R}, \quad x \neq 0$$

(i) Determine f(5) (ii) Find $f^{-1}(x)$

Teaching Video : http://www.NumberWonder.co.uk/Video/v9002(8).mp4

[4 marks]

(iii) Use your part (i) answer to check your part (ii) answer.

[1 mark]

8.3 Exercise

Marks Available: 48

Question 1

Find the inverse of each of the following functions.

In each case the domain is the set of real numbers, $x \in \mathbb{R}$ (i) f(x) = 7 - 3x (ii) g(x) = 8x + 3

(iii)
$$h(x) = \frac{1}{2}x + 5$$
 (iv) $k(x) = \frac{x}{5} - 4$

[12 marks]

Question 2

Find the inverse of each of the following functions. In each case the domain is the set of real numbers, $x \in \mathbb{R}$

(i)
$$m(x) = 2(3-5x)$$
 (ii) $n(x) = \frac{x-8}{3}$

(iii)
$$p(x) = \frac{7x}{4}$$
 (iv) $q(x) = \frac{3x}{5} + 4$

[12 marks]

Question 3

Find the inverse of each of the following functions. In each case the domain is the set of real numbers, $x \in \mathbb{R}$

(i)
$$r(x) = \frac{x}{11}$$
 (ii) $s(x) = \frac{1}{4x}, x \neq 0$

(iii)
$$t(x) = \frac{3}{2x}, x \neq 0$$
 (iv) $u(x) = \frac{1}{x} + 4, x \neq 0$

Question 4

Find the inverse of each of the following functions. In each case the domain is the set of real numbers, $x \in \mathbb{R}$

(i)
$$v(x) = 9 - \frac{1}{x}, x \neq 0$$
 (ii) $w(x) = 5 - \frac{3}{x}, x \neq 0$

(iii)
$$z(x) = \frac{2}{x} + 5, \ x \neq 0$$
 (iv) $a(x) = \frac{x+4}{x-3}, \ x \neq 3$

[12 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk