Lesson 9

9.1 "Worst Case" Inverse Functions

In the GCSE examination there is a particularly awkward class of function to which the inverse may be requested.
The function referred to is known as a linear rational function and is of the form,

$$
f(x)=\frac{a x+b}{c x+d} \quad a, b, c, d \in \mathbb{Z}, \quad x \in \mathbb{R}, \quad x \neq-\frac{d}{c}
$$

9.2 Example

Find the inverse function of the following function,

$$
f(x)=\frac{5 x-1}{2 x+3} \quad x \in \mathbb{R}, x \neq-\frac{3}{2}
$$

Teaching Video : http://www.NumberWonder.co.uk/Video/v9002(9).mp4

[4 marks]

Check if your answer could be correct by working out $f(7)$ and then inserting the answer into your proposed inverse function.

9.3 Exercise

Marks Available: 32
Question 1
Find the inverse of each of the following functions.
In each case the domain is the set of real numbers, $x \in \mathbb{R}$
(i) $\quad b(x)=\frac{7-x}{x}, \quad x \neq 0$
(ii) $\quad c(x)=\frac{5-3 x}{x}, x \neq 0$

Question 2

Find the inverse of each of the following functions.
In each case the domain is the set of real numbers, $x \in \mathbb{R}$
(i) $\quad d(x)=\frac{x+3}{x+2}, \quad x \neq-2$
(ii) $\quad e(x)=\frac{x+1}{x-2}, \quad x \neq 2$

Question 3

Find the inverse of each of the following functions.
In each case the domain is the set of real numbers, $x \in \mathbb{R}$
(i) $\quad f(x)=\frac{1}{2 x}+\frac{1}{3 x}, \quad x \neq 0$
(ii) $g(x)=\frac{3}{5 x}+\frac{1}{4 x}+2 . \quad x \neq 0$

Question 4

Find the inverse of each of the following functions.
In each case the domain is the set of real numbers, $x \in \mathbb{R}$
(i) $\quad h(x)=\frac{x^{2}+5 x+6}{x^{2}+6 x+8}, \quad x \neq-4,-2$

HINT: separately factorise the numerator and the denominator
(ii) $\quad k(x)=\frac{x^{2}-4}{x^{2}-4 x+4}, \quad x \neq 2$

