$$
x^{0} \times x^{0}=x^{0}
$$

$$
x^{3} \times x^{3}=x^{33}
$$

Second Edition

Index Form

Lesson 1

GCSE (Year 9) Mathematics
 Index Form

1.1 Numbers written in index form

Here is a number written in index form; 7^{4}
This is a quick way of representing,

$$
7 \times 7 \times 7 \times 7
$$

or, in other words,

1.2 Base and Index

It's often convenient to write an integer, such as 2401, in index form,

$$
2401=7^{4}
$$

This is because the index form gives insight to the number 2401.
It makes it obvious, for example, that 2401 will divide exactly by 7 but not by 13 .
When a number, such as 2401 , is written as 7^{4} mathematicians call the 7 the base of the number and the 4 the index.

1.3 Index Form Arithmetic

It's useful to be able to do arithmetic keeping the numbers involved in index form.

1.3.1 The $1^{\text {st }}$ Law : When multiplying, same base indices add

$$
\begin{aligned}
& 7^{3} \times 7^{2} \\
= & \left(7^{3}\right) \times\left(7^{2}\right) \\
= & (7 \times 7 \times 7) \times(7 \times 7) \\
= & 7 \times 7 \times 7 \times 7 \times 7 \\
= & 7^{5} \\
& \therefore 7^{3} \times 7^{2}=7^{5}
\end{aligned}
$$

The $1^{\text {st }}$ Law
When multiplying, same base indices add,

$$
a^{m} \times a^{n}=a^{m+n}
$$

1.3.2 $2^{\text {nd }}$ Law : When dividing, same base indices subtract

$$
\begin{aligned}
& \frac{7^{5}}{7^{3}} \\
= & \frac{7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7} \\
= & \frac{(7 \times 7 \times 7) \times(7 \times 7)}{(7 \times 7 \times 7)} \\
= & 7 \times 7 \\
= & 7^{2} \\
& \therefore \frac{7^{5}}{7^{3}}=7^{2}
\end{aligned}
$$

The $2^{\text {nd }}$ Law

When dividing, same base indices subtract,

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

1.3.3 $3^{\text {rd }}$ Law : When powering a power, indices multiply

An index can also be called a power

$$
\begin{aligned}
& \left(7^{3}\right)^{2} \\
= & \left(7^{3}\right) \times\left(7^{3}\right) \\
= & (7 \times 7 \times 7) \times(7 \times 7 \times 7) \\
= & 7 \times 7 \times 7 \times 7 \times 7 \times 7 \\
= & 7^{6}
\end{aligned}
$$

$$
\therefore\left(7^{3}\right)^{2}=7^{6}
$$

The $3^{\text {rd }}$ Law

When powering an power, indices multiply

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

1.3.4 $4^{\text {th }}$ Law : A square root halves the index

$$
\begin{aligned}
& \sqrt{7^{6}} \\
= & \sqrt{7 \times 7 \times 7 \times 7 \times 7 \times 7} \\
= & \sqrt{(7 \times 7 \times 7) \times(7 \times 7 \times 7)} \\
= & (7 \times 7 \times 7) \\
= & 7^{3}
\end{aligned}
$$

$$
\therefore \sqrt{7^{6}}=7^{3}
$$

The $4^{\text {th }}$ Law

A square root halves the index,

$$
\sqrt{a^{m}}=a^{\frac{m}{2}}
$$

With $m=1$, the $4^{\text {th }}$ law tells us that,

A 4 ${ }^{\text {th }}$ Law Consequence

A square root can be replaced with an index of $\frac{1}{2}$

$$
\sqrt{a}=a^{\frac{1}{2}}
$$

1.4 Exercise

GCSE (Year 9) Mathematics
 Index Form

Index Form Race $\mathbf{N}^{\circ} \mathbf{1}$

Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some integer, m Target time : $\mathbf{1 5}$ minutes
(a) $13^{5} \times 13^{4}$
(b) $7^{8} \times 7^{6}$
(c) 11×11^{4}
(d) $5^{4} \times 5^{4} \times 5^{4}$
(e) $\left(5^{7}\right)^{3}$
(f) $\quad\left(2^{7}\right)^{5}$
(g) $\quad 101^{20} \times 101^{5}$
(h) $5^{82} \times 5^{54}$
(i) $\left(3^{4}\right)^{2} \times\left(3^{2}\right)^{5}$
(j) $\frac{7^{8}}{7^{3}}$
(k) $\frac{5^{50}}{5^{25}}$
(1) $\frac{11^{7}}{11}$
(m) $\frac{13^{5}}{13^{5}}$
(n) $\frac{103^{50}}{103^{10}}$
(o) $\frac{7^{102}}{7^{51}}$
(p) $\quad\left(3^{2}\right)^{3} \times 3^{5}$
(q) $\quad\left(5^{4}\right)^{3} \times 5^{2}$
(r) $\quad\left(23^{7}\right)^{2} \times 23^{5}$
(s) $\frac{2^{7}}{2^{4}} \times \frac{2^{5}}{2^{3}}$
(t) $\frac{5^{6}}{5^{4}} \times \frac{5^{7}}{5^{2}}$
($\mathbf{u}) \sqrt{5^{8}}$
(v) $\frac{7^{11}}{7^{4}} \times \frac{7^{6}}{7^{3}} \quad(\mathbf{w}) \quad \frac{3^{5} \times 3^{4}}{3^{2} \times 3^{3}} \quad$ (x) $\frac{\left(5^{3}\right)^{4}}{\left(5^{2}\right)^{3}}$
(y) $\sqrt{11^{6}} \quad(\mathbf{z}) \sqrt{\frac{5^{11}}{5^{5}}}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

