GCSE (Year 9) Mathematics
 Index Form

2.1 The First Four Laws

In lesson 1, four Laws concerning numbers written in index form were deduced,

The $1^{\text {st }}$ Law

When multiplying, same base indices add,

$$
a^{m} \times a^{n}=a^{m+n}
$$

The $2^{\text {nd }}$ Law

When dividing, same base indices subtract,

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

The 3 ${ }^{\text {rd }}$ Law
When powering a power, indices multiply,

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

The $4^{\text {th }}$ Law

A square root halves the index,

$$
\sqrt{a^{m}}=a^{\frac{m}{2}}
$$

2.2 An Index of Half

An interesting consequence of the $4^{\text {th }}$ Law was deduced by letting $m=1$. This gave a result which is sufficiently important to make it the $5^{\text {th }}$ Law

5th Law

A square root can be replaced with an index of $\frac{1}{2}$

$$
\sqrt{a}=a^{\frac{1}{2}}
$$

The following clever calculation, in which the number 16 is rewritten as 2^{4}, shows that the $5^{\text {th }}$ law can be deduced from the $3^{\text {rd }}$,

$$
\begin{aligned}
16^{\frac{1}{2}} & =\left(2^{4}\right)^{\frac{1}{2}} \\
& =2^{2} \\
& =4
\end{aligned}
$$

2.3 An Index of Zero

The $2^{\text {nd }}$ Law also gives rise to a surprising result.
Recall that it says that "When dividing, same base indices subtract"
For example,

$$
\frac{7^{5}}{7^{3}}=7^{2}
$$

Now consider the similar calculation $\frac{7^{4}}{7^{4}}$ in two different ways:
\diamond Firstly, pretty much anything divided by itself is 1 ,

$$
\frac{7^{4}}{7^{4}}=1
$$

\diamond Secondly, by the $2^{\text {nd }}$ Law,

$$
\begin{aligned}
\frac{7^{4}}{7^{4}} & =7^{4-4} \\
& =7^{0}
\end{aligned}
$$

It is said that "Mathematics abhors a contradiction" by which is meant that the same question tackled in different ways should lead to equivalent answers.
So, the two seemingly different answers must in fact equal each other.
That is, $7^{0}=1$

$6^{\text {th }}$ Law

Any real number to the power zero equals one
(with the sole exception of 0^{0} which is undefined)

$$
a^{0}=1 \quad a \neq 0
$$

Example

$$
\begin{aligned}
& 11^{5} \times 11^{0} \\
= & 11^{5} \times 1 \quad \text { using the } 6^{\mathrm{th}} \text { Law } \\
= & 11^{5}
\end{aligned}
$$

This example could have also been done using the $1^{\text {st }}$ Law.

2.4 Exercise

GCSE (Year 9) Mathematics
 Index Form

Index Form Race $\mathbf{N}^{\circ} \mathbf{2}$

Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some real number, m Target time : 15 minutes
(a) $17^{15} \times 17^{10}$
(b) $7^{8} \times 7^{0}$
(c) $107^{0} \times 107^{\frac{1}{2}}$
(d) $5^{4} \times 5$
(e) $\left(5^{4}\right)^{6}$
(f) $\quad\left(5^{4}\right)^{\frac{1}{2}}$
(g) $\quad\left(13^{\frac{1}{2}}\right)^{12}$
(h) $7^{\frac{1}{2}} \times 7^{\frac{1}{2}}$
(i) $\quad\left(17^{4}\right)^{\frac{1}{2}} \times\left(17^{2}\right)^{4}$
(j) $\frac{11^{13}}{11^{8}}$
(k) $\frac{\sqrt{7}}{7^{\frac{1}{2}}}$
(1) $\sqrt{5} \times \sqrt{5}$
(m) $\frac{17^{\frac{1}{2}}}{17^{\frac{1}{2}}}$
(n) $\frac{23^{0.5}}{23^{0}}$
(o) $19^{0} \times 19$
(p) $\quad\left(29^{20}\right)^{3} \times 29^{7}$
(q) $\quad\left(7^{10}\right)^{\frac{1}{2}} \times \frac{7^{14}}{7^{3}} \quad(\mathbf{r})$
$\left(2^{8}\right)^{8} \times 2^{5}$
(s) $\frac{5^{7}}{5^{2}} \times \frac{5^{0}}{5^{3}}$
(t) $\frac{13^{14} \times 13^{6}}{13^{2} \times 13^{8}}$
(u) $\sqrt{41^{22}}$
(v) $\frac{7^{1}}{7^{\frac{1}{2}}} \times \frac{7^{2}}{7^{\frac{1}{2}}}$
(w) $\left(\sqrt{13^{6}}\right)^{0}$
($\mathbf{x}) \frac{\left(5^{8}\right)^{4}}{\left(5^{2}\right)^{5}}$
(y) $\sqrt{19^{56}} \quad(\mathbf{z}) \quad \sqrt{\frac{\left(5^{4}\right)^{11}}{5^{6}}}$

If I asked Zeta "How did the dude do ?" Zeta would say :

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder

2.5 Exercise

GCSE (Year 9) Mathematics
 Index Form

Index Form Race $\mathbf{N}^{\circ} 3$

Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some real number, m Target time : 15 minutes
(a) $17^{50} \times 17^{60}$
(b) $\sqrt{13^{48}}$
(c) $11^{45} \times 11^{0}$
(d) $\frac{19^{33}}{19^{11}}$
(e) $23^{25} \times 23^{4}$
(f) $\left(13^{44}\right)^{2}$
(g) $\quad(\sqrt{3})^{8}$
(h) $p^{21} \times p^{53}$
(i) $\sqrt{\sqrt{5^{20}}}$
($\mathbf{j}) \quad \frac{p^{36}}{p^{4}}$
(k) $\quad\left(p^{5}\right)^{10}$
(I) $\frac{47^{7}}{47}$
(\mathbf{m}) $p^{53} \times p$
(n) $\frac{\left(7^{8}\right)^{5}}{\left(7^{6}\right)^{3}}$
(o) $\frac{p^{25}}{p}$
(\mathbf{p}) $\quad\left(p^{9}\right)^{3} \times p^{23}$
(q) $\quad\left(17^{20}\right)^{\frac{1}{2}} \times \frac{17^{12}}{17^{3}}$
(r)
$\left(31^{7}\right)^{7} \times 31^{5}$
(s) $\frac{p^{9}}{p^{2}} \times \frac{p^{7}}{p^{6}}$
(t) $\frac{p^{5} \times p^{7}}{p^{8}}$
(\mathbf{u}) $\sqrt{p^{24}}$
(v) $\frac{7^{10}}{7^{\frac{1}{2}}} \times \frac{7^{20}}{7^{\frac{1}{2}}}$
$(\mathbf{w}) \quad p^{\frac{1}{2}} \times p^{\frac{1}{2}}$
(x) $\frac{\left(p^{7}\right)^{4}}{\left(p^{2}\right)^{6}}$
(y) $\sqrt{17^{12} \times 17^{26}} \quad$ (z) $\sqrt{\frac{\left(23^{2}\right)^{14}}{23^{8}}}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

