3.1 Negative Indices

In lesson 2, a calculation done in two different ways resulted in seemingly different answers. Mathematical logic then dictated that each had be equal to the other. The result was the $6^{\text {th }} \mathrm{Law}$ of indices,

$6^{\text {th }}$ Law

Any real number to the power zero equals one
(with the sole exception of 0^{0} which is undefined)

$$
a^{0}=1 \quad a \neq 0
$$

This "two different paths" technique is frequently employed by mathematicians.
What follows is another example of its use.
Consider the following chain of reasoning,

$$
\begin{aligned}
& \frac{7^{3}}{7^{5}} \\
= & \frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7} \\
= & \frac{(7 \times 7 \times 7)}{(7 \times 7 \times 7) \times(7 \times 7)} \\
= & \frac{1}{7 \times 7} \\
= & \frac{1}{7^{2}}
\end{aligned}
$$

Now, look at this alternative processing of the same calculation,

$$
\begin{aligned}
\frac{7^{3}}{7^{5}} & =7^{3-5} \quad\left(\text { By the } 2^{\text {nd }} \text { Law }\right) \\
& =7^{-2}
\end{aligned}
$$

The inescapable conclusion is that,

$$
7^{-2}=\frac{1}{7^{2}}
$$

$7^{\text {th }}$ Law

A negative index means reciprocal

$$
a^{-m}=\frac{1}{a^{m}} \quad a \neq 0
$$

Index Form Race $\mathbf{N}^{\circ} 5$

Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some real number, m Target time : $\mathbf{1 5}$ minutes
(a) $\frac{1}{5^{8}}$
(b) $\frac{1}{3^{7}}$
(c) $\frac{1}{7}$
(d) $5^{9} \times 5^{-4}$
(e) $13^{13} \times 13^{-3}$
(f) $\quad 7^{5} \times 7^{-13}$
(g) $\quad 2^{9} \times 2^{-9}$
(h) $\frac{1}{11^{5}}$
(i) 2×2^{-7}
(j) $\frac{11^{8}}{11^{5}}$
(k) $\frac{7^{5}}{7^{11}}$
(1) $\frac{17^{7}}{17^{13}}$
(m) $\frac{13^{-3}}{13^{6}}$
(n) $\sqrt{7^{-12}}$
(o) $\left(5^{-8}\right)^{2}$
(\mathbf{p}) $\left(11^{2}\right)^{-3}$
$(\mathbf{q}) \quad\left(7^{-10}\right)^{-5}$
(r) $\quad\left(2^{7}\right)^{7} \times 2^{-25}$
(s) $\frac{5^{7}}{5^{3}} \times \frac{5^{-2}}{5^{0}}$
(t) $\frac{1}{\left(3^{4}\right)^{\frac{1}{2}}}$
(\mathbf{u}) $\sqrt{5^{-2}}$
(v) $\frac{1}{2^{3}}$
(w) $\frac{1}{2^{-2}}$
($\mathbf{x}) \frac{\left(5^{2}\right)^{4}}{\left(5^{5}\right)^{3}}$
(y) $\sqrt{17^{-26}}$
(z) $\sqrt{\frac{\left(2^{3}\right)^{11}}{2^{55}}}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

3.3 Exercise

Index Form Race $\mathbf{N}^{\circ} 6$
 Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some real number, m Target time : $\mathbf{1 5}$ minutes
(a) $\frac{1}{7^{9}}$
(b) $\frac{1}{3}$
(c) $\frac{1}{7^{-4}}$
(d) $7^{17} \times 7^{-14}$
(e) $11^{-4} \times 11^{-6}$
(f) $13^{15} \times 13^{-25}$
(g) $19^{13} \times 19^{-12}$
(h) $\frac{1}{17^{5}}$
(i) 7×7^{-17}
(j) $\frac{13^{15}}{13^{18}}$
(k) $\frac{11^{5}}{11^{34}}$
(1) $\frac{7^{100}}{7^{101}}$
(\mathbf{m}) $\frac{17^{-8}}{17^{5}}$
(n) $\sqrt{17^{-24}}$
(o) $\left(7^{-6}\right)^{5}$
(p) $\quad\left(31^{22}\right)^{-4}$
(q) $\left(17^{-12}\right)^{-5}$
(r) $\quad\left(3^{5}\right)^{5} \times 3^{-25}$
(s) 4×2^{-5}
(t) $\frac{3^{-5}}{\left(3^{4}\right)^{\frac{1}{2}}}$
(u) $\sqrt{\left(7^{-3}\right)^{-6}}$
(v) $\frac{1}{23^{4}} \quad$ (w) $\quad \frac{1}{23^{-4}} \quad$ (x) $\frac{\left(7^{3}\right)^{5}}{\left(7^{6}\right)^{6}}$
(y) $\sqrt{47^{-206}} \quad$ (z) $\sqrt{\frac{\left(2^{-3}\right)^{11}}{2^{55}}}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

Index Form Race $\mathbf{N}^{\circ} 7$

Do NOT use a calculator

Write answers in prime index form, p^{m}, for some prime, p, and some real number, m Target time : $\mathbf{1 5}$ minutes
(a) $\frac{1}{p^{12}}$
(b) $\frac{1}{p}$
(c) $\frac{1}{p^{-7}}$
(d) $p^{7} \times p^{-4}$
(e) $p^{-3} \times p^{-5}$
(f) $p^{8} \times p^{-13}$
($\mathbf{g}) \quad p^{-5} \times p^{2}$
(h) $\frac{1}{p^{7}}$
(i) $p \times p^{-1}$
($\mathbf{j}) \quad \frac{p^{12}}{p^{19}}$
(k) $\frac{p^{8}}{p^{14}}$
(1) $\frac{p^{20}}{p^{31}}$
(\mathbf{m}) $\frac{p^{-7}}{p^{6}}$
(\mathbf{n}) $\sqrt{p^{-4}}$
(o) $\left(p^{-3}\right)^{8}$
(p) $\quad\left(p^{33}\right)^{-3}$
(q) $\left(p^{-13}\right)^{-3}$
(r) $\quad\left(p^{7}\right)^{3} \times p^{-25}$
(s) $\quad p^{-\frac{1}{2}} \times p^{-\frac{1}{2}}$
(t) $\frac{p^{-4}}{\left(p^{6}\right)^{\frac{1}{2}}}$
(u) $\sqrt{\left(p^{-5}\right)^{-8}}$
(v) $\frac{1}{p^{5}}$
(w) $\frac{1}{p^{-5}}$
(x) $\frac{\left(p^{5}\right)^{5}}{\left(p^{6}\right)^{6}}$
(\mathbf{y}) $\sqrt{p^{-888}}$
(z)
$\sqrt{\frac{\left(p^{-3}\right)^{-11}}{p^{-55}}}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

