Lesson 3

3.1 Negative Indices

In lesson 2, a calculation done in two different ways resulted in seemingly different answers. Mathematical logic then dictated that each had be equal to the other. The result was the 6th Law of indices,

6th Law

Any real number to the power zero equals one

(with the sole exception of 0^0 which is undefined)

 $a^0 = 1$ $a \neq 0$

This "two different paths" technique is frequently employed by mathematicians. What follows is another example of its use.

Consider the following chain of reasoning,

$$\frac{7^3}{7^5}$$

$$= \frac{7 \times 7 \times 7}{7 \times 7 \times 7 \times 7 \times 7}$$

$$= \frac{(7 \times 7 \times 7)}{(7 \times 7 \times 7) \times (7 \times 7)}$$

$$= \frac{1}{7 \times 7}$$

$$= \frac{1}{7^2}$$

Now, look at this alternative processing of the same calculation,

$$\frac{7^3}{7^5} = 7^{3-5}$$
 (By the 2nd Law)
= 7^{-2}

The inescapable conclusion is that,

$$7^{-2} = \frac{1}{7^2}$$

7th Law

A negative index means reciprocal

$$a^{-m} = \frac{1}{a^m} \qquad a \neq 0$$

3.2 Exercise

Index Form Race N° 5

Do NOT use a calculator

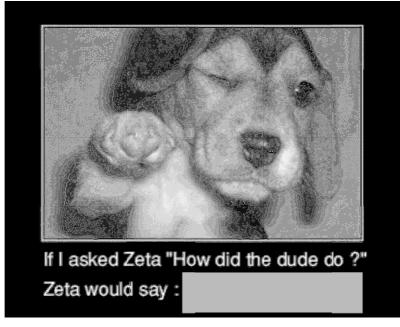
Write answers in prime index form, p^m , for some prime, p, and some real number, m*Target time : 15 minutes*

(a)
$$\frac{1}{5^8}$$
 (b) $\frac{1}{3^7}$ (c) $\frac{1}{7}$

(**d**)
$$5^9 \times 5^{-4}$$
 (**e**) $13^{13} \times 13^{-3}$ (**f**) $7^5 \times 7^{-13}$

(g)
$$2^9 \times 2^{-9}$$
 (h) $\frac{1}{11^5}$ (i) 2×2^{-7}

(**j**)
$$\frac{11^8}{11^5}$$
 (**k**) $\frac{7^5}{7^{11}}$ (**l**) $\frac{17^7}{17^{13}}$


 $(\mathbf{m}) = \frac{13^{-3}}{13^6}$ $(\mathbf{n}) = \sqrt{7^{-12}}$ $(\mathbf{o}) = (5^{-8})^2$

$$(\mathbf{p}) \quad (11^2)^{-3} \qquad (\mathbf{q}) \quad (7^{-10})^{-5} \qquad (\mathbf{r}) \quad (2^7)^7 \times 2^{-25}$$

(s)
$$\frac{5^7}{5^3} \times \frac{5^{-2}}{5^0}$$
 (t) $\frac{1}{(3^4)^{\frac{1}{2}}}$ (u) $\sqrt{5^{-2}}$

$$(\mathbf{v}) = \frac{1}{2^3}$$
 $(\mathbf{w}) = \frac{1}{2^{-2}}$ $(\mathbf{x}) = \frac{(5^2)^4}{(5^5)^3}$

$$(\mathbf{y}) \quad \sqrt{17^{-26}} \qquad (\mathbf{z}) \quad \sqrt{\frac{(2^3)^{11}}{2^{55}}}$$

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

3.3 Exercise

Index Form Race N° 6

Do NOT use a calculator

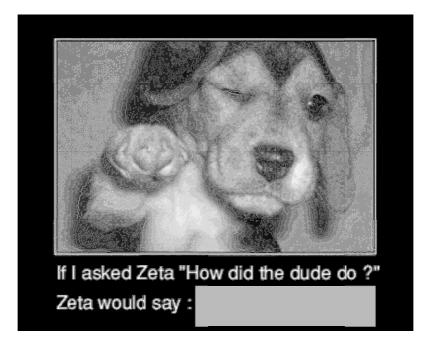
Write answers in prime index form, p^m , for some prime, p, and some real number, m*Target time : 15 minutes*

(a)
$$\frac{1}{7^9}$$
 (b) $\frac{1}{3}$ (c) $\frac{1}{7^{-4}}$

(**d**)
$$7^{17} \times 7^{-14}$$
 (**e**) $11^{-4} \times 11^{-6}$ (**f**) $13^{15} \times 13^{-25}$

(**g**)
$$19^{13} \times 19^{-12}$$
 (**h**) $\frac{1}{17^5}$ (**i**) 7×7^{-17}

$$(\mathbf{j}) \quad \frac{13^{15}}{13^{18}} \qquad (\mathbf{k}) \quad \frac{11^5}{11^{34}} \qquad (\mathbf{l}) \quad \frac{7^{100}}{7^{101}}$$


$$(\mathbf{m}) = \frac{17^{-8}}{17^5}$$
 $(\mathbf{n}) = \sqrt{17^{-24}}$ $(\mathbf{o}) = (7^{-6})^5$

(**p**)
$$(31^{22})^{-4}$$
 (**q**) $(17^{-12})^{-5}$ (**r**) $(3^{5})^{5} \times 3^{-25}$

(s)
$$4 \times 2^{-5}$$
 (t) $\frac{3^{-5}}{(3^4)^{\frac{1}{2}}}$ (u) $\sqrt{(7^{-3})^{-6}}$

$$(\mathbf{v}) = \frac{1}{23^4}$$
 $(\mathbf{w}) = \frac{1}{23^{-4}}$ $(\mathbf{x}) = \frac{(7^3)^5}{(7^6)^6}$

$$(\mathbf{y}) \quad \sqrt{47^{-206}} \quad (\mathbf{z}) \quad \sqrt{\frac{(2^{-3})^{11}}{2^{55}}}$$

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

3.4 Exercise

Index Form Race N° 7

Do NOT use a calculator

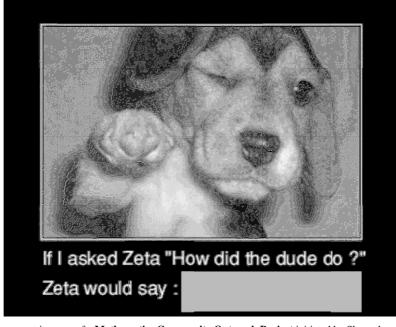
Write answers in prime index form, p^m , for some prime, p, and some real number, m*Target time : 15 minutes*

(a)	$\frac{1}{p^{12}}$	$(\mathbf{b}) = \frac{1}{p}$	$(c) \frac{1}{p^{-7}}$
	-	-	-

(**d**)
$$p^7 \times p^{-4}$$
 (**e**) $p^{-3} \times p^{-5}$ (**f**) $p^8 \times p^{-13}$

(g)
$$p^{-5} \times p^2$$
 (h) $\frac{1}{p^7}$ (i) $p \times p^{-1}$

(**j**)
$$\frac{p^{12}}{p^{19}}$$
 (**k**) $\frac{p^8}{p^{14}}$ (**1**) $\frac{p^{20}}{p^{31}}$


$$(\mathbf{m}) = \frac{p^{-7}}{p^6}$$
 $(\mathbf{n}) = \sqrt{p^{-4}}$ $(\mathbf{o}) = (p^{-3})^8$

(**p**)
$$(p^{33})^{-3}$$
 (**q**) $(p^{-13})^{-3}$ (**r**) $(p^{7})^{3} \times p^{-25}$

(s)
$$p^{-\frac{1}{2}} \times p^{-\frac{1}{2}}$$
 (t) $\frac{p^{-4}}{(p^6)^{\frac{1}{2}}}$ (u) $\sqrt{(p^{-5})^{-8}}$

$$(\mathbf{v}) = \frac{1}{p^5}$$
 $(w) = \frac{1}{p^{-5}}$ $(\mathbf{x}) = \frac{(p^5)^5}{(p^6)^6}$

$$(\mathbf{y}) = \sqrt{p^{-888}}$$
 $(\mathbf{z}) = \sqrt{\frac{(p^{-3})^{-11}}{p^{-55}}}$

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk