5.1 Powers of prime numbers

So far the laws of indices have only been applied to numbers with a base that is a prime number. They apply equally well when the base is composite.

For example: $\quad 8^{6} \times 8^{4}=8{ }^{10}$
Sometimes a question will ask that the answer be written in the form, a^{m}, where a is a prime number in which case there is extra work to do.

For example: $\quad 8^{6} \times 8^{4}=8^{10}=\left(2^{3}\right)^{10}=2^{30}$

5.2 'Together' Questions

Write each answer in the prime index form, p^{m}, where p is a prime number.
(a) 4^{4}
(b) 8^{5}
(c) $16^{\frac{1}{2}}$
(d) $4^{3} \times 2^{3}$
(e) 8×4
(f) $\frac{2^{12}}{4^{3}}$
(g) $2^{5} \times \sqrt{16}$
(h) $\quad 25^{4}$
(i) $\frac{5^{9}}{25^{2}}$

5.3 Exercise

Question 1

Complete the following table,

Number	rewritten as a power of 2
2	2^{1}
4	2^{2}
8	
16	
32	
64	
128	

For each of the following, rewrite in prime index form, p^{m}, where p is a prime number.
(a) $\quad 4^{6}$
(b) 8^{7}
(c) $64^{\frac{1}{2}}$
(d) $32^{3} \times 2^{3}$
(e) 128×4
(f) $\frac{2^{25}}{4^{3}}$
(g) $64^{5} \times \sqrt{16}$
(h) $128^{4} \times 32^{7}$
(i) $\frac{16^{9}}{64^{2}}$

Question 2

Complete the following table,

Number	rewritten as a power of 3
3	3^{1}
	3^{2}
	3^{3}
243	
729	
2187	

For each of the following, rewrite in prime index form, p^{m}, where p is a prime number.
(a) 9^{7}
(b) 81^{7}
(c) $81^{\frac{1}{2}}$
(d) $243^{4} \times 3^{4}$
(e) 2187×729
(f) $\quad \frac{3^{18}}{9^{3}}$
(g) $81^{7} \times \sqrt{9}$
(h) $\quad 27^{9} \times 9^{7}$
(i) $\frac{27^{9}}{2187}$

Question 3

Complete the following table,

Number	rewritten as a power of 5
5	5^{1}
	5^{2}
	5^{3}
625	
3125	
78625	

For each of the following, rewrite in prime index form, p^{m}, where p is a prime number.
(a) 3125^{7}
(b) $\quad\left(25^{3}\right)^{7}$
(c) $625^{\frac{1}{2}}$
(d) $125^{13} \times 5^{3}$
(e) 3125×78125
(f) $\frac{25^{8}}{15625}$
(g) $625 \times \sqrt{625}$
(h) $25^{19} \times 625^{7}$
(i) $\frac{78125^{2}}{25^{3}}$

Question 4

Complete the following table,

Number	rewritten as a power of 7
7	7^{1}
	7^{2}
	7^{3}
2401	
16807	
117649	
823543	

For each of the following, rewrite in prime index form, p^{m}, where p is a prime number.
(a) $117649{ }^{5}$
(b) $\quad\left(2401^{10}\right)^{7}$
(c) $117649^{\frac{1}{2}}$
(d) $343^{11} \times 49^{13}$
(e) 823543×49
(f) $\frac{2401^{8}}{823543^{2}}$
(g) $7^{8} \times \sqrt{117649}$
(h) $\quad\left(343^{4}\right)^{5} \times 16807^{7}$
(i) $\frac{823543^{20}}{343^{5}}$

