5.1 Powers of prime numbers

So far the laws of indices have only been applied to numbers with a base that is a prime number. They apply equally well when the base is composite.

For example : $8^{6} \times 8^{4} = 8^{10}$

Sometimes a question will ask that the answer be written in the form, a^m , where a is a prime number in which case there is extra work to do.

For example: $8^6 \times 8^4 = 8^{10} = (2^3)^{10} = 2^{30}$

5.2 'Together' Questions

Write each answer in the prime index form, p^m , where p is a prime number.

(a)
$$4^4$$
 (b) 8^5 (c) $16^{\frac{1}{2}}$

(d)
$$4^3 \times 2^3$$
 (e) 8×4 (f) $\frac{2^{12}}{4^3}$

(g)
$$2^5 \times \sqrt{16}$$
 (h) 25^4 (i) $\frac{5^9}{25^2}$

5.3 Exercise

Question 1

Complete the following table,

Number	rewritten as a power of 2
2	21
4	2^{2}
8	
16	
32	
64	
128	

$$(a)$$
 4⁶

$$(b)$$
 8⁷

(c)
$$64^{\frac{1}{2}}$$

$$(d) \qquad 32^3 \times 2^3$$

$$(e) \qquad 128 \times 4$$

(f)
$$\frac{2^{25}}{4^3}$$

$$(g) \qquad 64^{5} \times \sqrt{16}$$

$$(h)$$
 128⁴ × 32⁷

$$(i) \frac{16^9}{64^2}$$

Question 2
Complete the following table,

Number	rewritten as a power of 3
3	31
	3 ²
	3 3
243	
729	
2187	

$$(a)$$
 9⁷

(c)
$$81^{\frac{1}{2}}$$

$$(d) \qquad 243^4 \times 3^4$$

$$(e) \qquad 2187 \times 729$$

$$(f) \frac{3^{18}}{9^3}$$

$$(\mathbf{g}) \qquad 81^{7} \times \sqrt{9}$$

$$(\mathbf{h}) \qquad 27^9 \times 9^7$$

(i)
$$\frac{27^9}{2187}$$

Question 3 Complete the following table,

Number	rewritten as a power of 5
5	5 1
	5 ²
	5 ³
625	
3125	
15625	
78125	

$$(b)$$
 $(25^3)^7$

(c)
$$625^{\frac{1}{2}}$$

$$(d)$$
 125¹³ × 5³

(e)
$$3125 \times 78125$$

$$(f) \qquad \frac{25^8}{15625}$$

$$(g) \qquad 625 \, \times \, \sqrt{625}$$

$$(h)$$
 25¹⁹ × 625⁷

(i)
$$\frac{78125^2}{25^3}$$

Question 4

Complete the following table,

Number	rewritten as a power of 7
7	71
	7 ²
	73
2401	
16807	
117649	
823543	

$$(b)$$
 $(2401^{10})^7$

(c)
$$117649^{\frac{1}{2}}$$

$$(d) \qquad 343^{\,11} \, \times 49^{\,13}$$

(e)
$$823543 \times 49$$

$$(f) \qquad \frac{2401^8}{823543^2}$$

$$(g) \qquad 7^8 \, \times \, \sqrt{117649}$$

(h)
$$(343^4)^5 \times 16807^7$$
 (i) $\frac{823543^{20}}{343^5}$

(i)
$$\frac{823543^{20}}{343^{5}}$$