Lesson 6

6.1 The Fundamental Theorem of Arithmetic and Indices

The fundamental theorem of arithmetic says that any ${ }^{\dagger}$ positive integer which is not prime can be written as a product of primes.

Examples: (i) $\quad 35=5 \times 7$
(ii) $12=2^{2} \times 3$

This idea is the key to answering harder questions involving indices.

6.2 The $8^{\text {th }}$ Law : The Distributive Law

$$
\begin{aligned}
& 35^{3} \\
= & (5 \times 7)^{3} \\
= & (5 \times 7) \times(5 \times 7) \times(5 \times 7) \\
= & 5 \times 5 \times 5 \times 7 \times 7 \times 7 \\
= & 5^{3} \times 7^{3} \\
& \therefore 35^{3}=(5 \times 7)^{3}=5^{3} \times 7^{3}
\end{aligned}
$$

The $\mathbf{8}^{\text {nd }}$ Law : The Distributive Law

$$
(a \times b)^{m}=a^{m} \times b^{m}
$$

6.3 'Together' Questions

Write answers in prime index form, $p^{m} q^{n}$, where p and q are prime numbers.
(a) 15^{4}
(b) 12^{5}
(c) $6^{3} \times 2^{2}$
(d) $10^{3} \times 2^{5}$
(e) $21^{4} \times 3^{2}$
(f) $\quad 20^{3} \times 10^{2}$
${ }^{\dagger}$ Except the number 1.

6.4 Exercise

Question 1
Complete the following tables,

Number	Written as a power of 2
2	2^{1}
4	2^{2}
	2^{3}
16	2^{5}
	2^{6}
128	

Number	Written as a power of 3
3	3^{1}
9	3^{2}
	3^{3}
243	3^{4}
729	
2187	

Write answers in prime index form, $p^{m} q^{n}$, where p and q are prime numbers.
(a) $6{ }^{8}$
(b) 18^{5}
(c) 12^{7}
(d) $6^{3} \times 2^{3}$
(e) $18^{3} \times 3^{9}$
(f) $\quad \frac{6^{5}}{2^{3}}$
(g) 24^{5}
(h) $\quad 128^{2} \times 2187^{7}$
(i) $\frac{6^{9}}{6^{2}}$

Question 2

Complete the following tables,

Number	Written as a power of 3
3	
	3^{2}
	3^{3}
81	3^{5}
729	
2187	

Number	Written as a power of 5
5	
	5^{2}
	5^{3}
625	5^{5}
15625	
78125	

Write answers in prime index form, $p^{m} q^{n}$, where p and q are prime numbers.
(a) 15^{7}
(b) 75^{4}
(c) 45^{8}
(d) $15^{5} \times 3^{4}$
(e) $75^{4} \times 3^{7}$
(f) $\frac{15^{8}}{3^{5}}$
(g) $45^{7} \times 5^{8}$
(h) $\quad 729^{3} \times 15625^{6}$
(i) $\frac{15^{9}}{15^{4}}$

Question 3

Complete the following tables,

Number	Written as a power of 2
2	
	2^{2}
	2^{3}
16	2^{5}
	2^{6}
	2^{7}

Number	Written as a power of 5
5	
	5^{2}
125	5^{4}
	5^{5}
15625	
78125	

Write answers in prime index form, $p^{m} q^{n}$, where p and q are prime numbers.
(a) 10^{12}
(b) 50^{14}
(c) $\quad 20^{18}$
(d) $10^{5} \times 4^{3}$
(e) $50^{4} \times 25^{4}$
(f) $\frac{50^{8}}{10^{5}}$
(g) $16^{7} \times 10^{8}$
(h) $78125^{3} \times 100^{6}$
(i) $\frac{40^{9}}{20^{4}}$

Question 4

(a) Write 135 as a product of primes.
(b) Hence, or otherwise, write in prime index form, $p^{m} q^{n}$, where p and q are prime numbers, the value of;

$$
135^{6} \times 15^{5}
$$

Question 5

(a) Write 180 as a product of primes.
(b) Hence, or otherwise, write in prime index form, $p^{m} q^{n}$, where p and q are prime numbers, the value of;

$$
180^{6} \times 6^{8}
$$

