Lesson 7

7.1 REVISION

PART ONE

Question 1

Find the value of the following sums

(-3) + 7 =(-6) - (-5) = $(-3) \times (-6) =$ $(-12) \div 4 =$ $(-9) \div (-3) =$ $(-16) \div 8 + (-3) =$

Question 2

Find the value of the following without using a calculator;

2 ⁵	=	$8^{\frac{1}{3}}$	=
4 ³	=	131 ¹	=
7 - 1	=	1 ⁵⁷	=
9 - 2	=	67 ⁰	=
$16^{\frac{1}{2}}$	=	$25^{\frac{3}{2}}$	=

Simplify the following, giving your answer in index form;

 $2^{7} \times 2^{8} =$ $11^{13} \div 11^{-5} =$ $5^{8} \div 5^{2} =$ $(3^{7})^{10} =$ $13^{4} \times 13^{5} =$ $(7^{5})^{-3} =$

Question 4

Given a = 3, b = 10 and c = -2, evaluate the following;

$$b + 2a$$
 a^2b

$$5b - 3c$$
 $\frac{b}{a - c}$

Question 5

Simplify the following algebraic expressions

7x + 3x - 4x = 5(h - 4) + 12 =

$$7x - 4y - 3x - 8y = 2x^5 \times 5x^3 =$$

$$4(u+6) + 9 = 10m^9 \div 5m^{-2} =$$

PART TWO

Question 1Write in prime index form, p^m , for some prime p.(i)(ii) $7 \times 7 \times 7 \times 7 \times 7$ $\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5}$

(iii)

$$\sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3}$$
(iv)
 $\frac{13 \times 13 \times 13}{13 \times 13 \times 13 \times 13}$

Question 2	
Write in prime index form, p^m ,	for some prime <i>p</i> .
(i)	(ii)
$7^{6} \times 7^{8}$	$5^7 \times 5^3 \times 5^6$

(iii)	(iv)
$13^{8} \times 13$	$\sqrt{17^8}$

(v)	(vi)
$\frac{11^9}{11^4}$	$(19^4)^6$

(vii)	(viii)
9	9 ⁵

Write in index form; (i) (ii) $5 \times 2 \times 2 \times 2 \times 5 \times 5$ $7 \times 5 \times 5 \times 7 \times 7$ $\frac{5 \times 2 \times 2 \times 2 \times 5 \times 5}{5 \times 5}$

(iii)

$$\sqrt{3 \times 3 \times 3 \times 3 \times 23 \times 23}$$
(iv)
 $\frac{17 \times 13 \times 13 \times 13 \times 13 \times 13}{17 \times 13 \times 13 \times 13}$

Question 4
Write in prime index form,
$$p^m$$
, for some prime p .
(i) (ii)
 $3^5 \times 3^4 \times 3^2 \times 3^6$ $13^7 \times 13^3 \times 13^0$

(iii) (iv)
$$17^8 \times (17^5)^5$$
 $\sqrt{11^8 \times 11^{10}}$

(v) (vi)

$$\frac{(5^6)^3}{(5^2)^4}$$
 (29⁸) ^{$\frac{1}{2}$}

(vii)

$$\sqrt{\sqrt{7^{20}}}$$
(viii)
 $\left(\left(5^3\right)^4\right)^3$

Simplify;

(i)		(ii)
	$p^{15} \times p^5 \times p^2 \times p^8$	$\frac{p^{17}}{p^5}$

(iii)		(iv)
	$\left(p^4\right)^5 \times p^3$	$\sqrt{p^6}$

$$\frac{(p^{16})^2}{p}$$

(**vi**) p^0

(vii) (viii) $\left(\frac{p^{19}}{p^{11}}\right)^2 \qquad p^8 \div p^2$

Question 6

Write in prime index form	n, p^m , for some prime, p .
(i)	(ii)
8	8×4

(iii) (iv)
$$9^5$$
 $9^3 \times 3^3$

Write in prime index form, $p^m q^n$, for some primes, p and q. (i) (ii) 12 $12^7 \times 2^3$

(iii) (iv)
$$12^8 \times 4^4$$
 $12^5 \times 6^3$

Question 8

- (**a**) Write 40 as a product of primes.
- (**b**) Hence, or otherwise, write in prime index form, $p^m q^n$, where p and q are prime numbers, the value of;

$$40^{6} \times 6^{5}$$

Question 9

Write in prime index form, p^m , for some prime, p. (i)
(ii) $\frac{1}{5 \times 5 \times 5}$ 7×7 $7 \times 7 \times 7$

$$(iii) \qquad (iv) \\ \frac{1}{13} \qquad \frac{2}{8}$$

Write in prime index form, p^{m} , for some prime p. (i) (ii) $11^{7} \times 11^{-3}$ $5^{-7} \times 5^{3}$

(iii) (iv)
$$19^{-8} \times (19^4)^5$$
 $\sqrt{11^{-26}}$

(v) (vi)

$$\frac{5^7}{5^9}$$
 $\frac{11^{-23}}{11^5}$

(vii)

$$\frac{(7^5)^3}{(7^6)^4}$$
(viii)
 $23^{-8} \times 23^{-7}$

Question 11

Write in prime index form, p^m , for some prime p .		
(i)	(ii)	
$2^{8} \times 2^{7}$	$2^{14} \times 2^{-5}$	
$2^{6} \times 2^{3}$	$2^4 \times 2^2$	

(iii) (iv)
$$\frac{2^3 \times 2^6}{2^{-4}}$$
 $\sqrt{\frac{2^{-23}}{2^{-5}}}$

Simplify;

(i) (ii)
$$p^{13} \times p^{-3} \times p^{7} \times p^{-2}$$
 $\frac{p^{-14}}{p^{4}}$

(iii) (iv)
$$(p^{-4})^5 \times p^{13}$$
 $\sqrt{p^{-56}}$

(v) (vi)

$$\frac{(p^{16})^{-2}}{p^{40}}$$
 (vi)

(vii) (viii)
$$\left(\frac{p^{19}}{p^{-11}}\right)^2$$
 (p^{-5})⁻⁸

Question 13

Write in prime index form, $p^m q^n$, for some primes, p and q. (i) (ii) $(2^5 \times 3^2)^4$ $(2^7 \times 5^{-3})^6$

(iii) (iv)
$$(\sqrt{5^8} \times \sqrt{7^6})^4$$
 (6³ × 4²)³

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk