Chapter 4

4.1 Vector Geometry

Many GCSE vector questions specify a couple of vectors and ask that they be used to move between points on a simple geometric shape such as a triangle, rectangle, hexagon, trapezium or parallelogram.

4.2 Example

The diagram, which is not drawn to scale, shows a regular hexagon $O A B C D E$

$$
\overrightarrow{O A}=\boldsymbol{a} \quad \overrightarrow{O B}=\boldsymbol{b}
$$

Teaching Video : http://www.NumberWonder.co.uk/v9009/4a.mp4 http://www.NumberWonder.co.uk/v9009/4b.mp4

<= Part 1
Part 2 =>

Watch the teaching video, then express the following in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{E B}=$
(ii) $\overrightarrow{C D}=$
(iii) $\overrightarrow{A B}=$
(iv) $\overrightarrow{B C}=$
(v) $\overrightarrow{A D}=$
(vi) $\overrightarrow{B D}=$

4.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable.

Make the method used clear.
Marks available : 40

Question 1

The diagram, which is not drawn to scale, shows a parallelogram $O A C B$ with

$$
\overrightarrow{O A}=\boldsymbol{a} \quad \overrightarrow{O B}=\boldsymbol{b}
$$

The point X is the mid-point of $A C$ and the point Y is the mid-point of $B C$.

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{B C}=$
(ii) $\overrightarrow{A C}=$
(iii) $\overrightarrow{B O}=$
(iv) $\overrightarrow{C Y}=$
(v) $\overrightarrow{A B}=$
(vi) $\overrightarrow{O X}=$
(vii) $\overrightarrow{A X}=$
(viii) $\overrightarrow{X Y}=$
(b) If $|\boldsymbol{a}|=|\boldsymbol{b}|$ which one of of following best describes shape $O A C B$?
A triangle
B trapezium
C rhombus
D cube

Question 2

The diagram, which is not drawn to scale, shows two squares $O B E A$ and $B C D E$.

$$
\overrightarrow{O A}=\boldsymbol{a} \text { and } \overrightarrow{O B}=\boldsymbol{b}
$$

The points F, G and H are the mid-points of $B E, C D$ and $E D$ respectively.

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\quad \overrightarrow{B G}=$
(ii) $\overrightarrow{G O}=$
(iii) $\overrightarrow{A C}=$
(iv) $\overrightarrow{G E}=$
(v) $\overrightarrow{G A}=$
(vi) $\overrightarrow{\mathrm{HO}}=$
(b) (i) Show that $\overrightarrow{A C}=\lambda \overrightarrow{G E}$ for an integer value of λ which is to be found.
(ii) WWhich one of the following is true about $\overrightarrow{A C}$ and $\overrightarrow{G E}$?
A same magnitude
B same direction
C perpendicular
D parallel

Question 3

On the lattice of equilateral triangles, $\quad \overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{O H}=$
(ii) $\overrightarrow{B E}=$
(iii) $\overrightarrow{E D}=$
(iv) $\overrightarrow{D A}=$
[4 marks]
(b) Given that \boldsymbol{a} and \boldsymbol{b} are unit vectors, find the magnitude of $\overrightarrow{O G}$

Question 4

GCSE Examination Question, May 2008, 4H, Q21
$P Q R S T U$, which is not drawn to scale, is a regular hexagon, centre O The hexagon is made from six equilateral triangles of side 2.5 cm

$$
\overrightarrow{T U}=\boldsymbol{a} \quad \text { and } \quad \overrightarrow{U P}=\boldsymbol{b}
$$

(a) Find, in terms of \boldsymbol{a} and \boldsymbol{b}, the vectors
(i) $\quad \overrightarrow{T P}=$
(ii) $\overrightarrow{P O}=$
[1 mark]
(iii) $\overrightarrow{U O}=$
[1 mark]
(b) Find the modulus (magnitude) of $\overrightarrow{U R}$

Question 5

GCSE Examination Question, November 2010, 4H, Q21
$P Q R S$, which is not drawn to scale, is a trapezium with $P Q$ parallel to $S R$

$$
\overrightarrow{S R}=\boldsymbol{a} \quad \overrightarrow{P Q}=3 \boldsymbol{a} \quad \overrightarrow{P S}=\boldsymbol{b}
$$

T is the point on $S Q$ such that $S T=\frac{1}{4} S Q$

(a) Find, in terms of \boldsymbol{a} and \boldsymbol{b},
(i) $\quad \overrightarrow{P R}=$
(ii) $\overrightarrow{S Q}=$
(iii) $\overrightarrow{P T}=$
[1 mark]
(b) $\quad \overrightarrow{P T}=k \overrightarrow{P R}$ where k is a fraction
(i) What does this result tell you about the points P, T and R ?
(ii) Find the value of k

Question 6

GCSE Examination Question, June 2011, 4H, Q24 edited

The diagram shows a trapezium $P Q R S$, which is not drawn to scale.

- $\quad T$ is the midpoint of $P R$
- $P S$ parallel to $Q R$
- $P S=4 Q R$
- $\overrightarrow{P Q}=\boldsymbol{a}$ and $\overrightarrow{Q R}=\boldsymbol{b}$

Find, in terms of \boldsymbol{a} and \boldsymbol{b},
(i) $\overrightarrow{P S}=$
(ii) $\quad \overrightarrow{P R}=$
(iii) $\overrightarrow{R S}=$
[1 mark]
(iv) $\quad \overrightarrow{Q T}=$
[1 mark]
(v) $\quad \overrightarrow{T S}=$

Question 7

GCSE Examination Question, January 2012, 4H, Q22

$O P Q R$, which is not drawn to scale, is a rectangle
D is the point on $O P$ such that $O D=\frac{1}{3} O P$
E is the point on $O Q$ such that $O E=\frac{2}{3} O Q$
$\overrightarrow{O D}=\boldsymbol{a} \quad \overrightarrow{O R}=3 \boldsymbol{b}$

Find, in terms of \boldsymbol{a} and \boldsymbol{b}
(i) $\overrightarrow{O Q}=$
(ii) $\overrightarrow{O E}=$
(iii) $\overrightarrow{D E}=$
[1 mark]

