Chapter 5

GCSE and A-Level Pure Mathematics
Vectors I

5.1 Vector Algebra

The more difficult GCSE vector questions can't be done directly from the provided diagram. Do use the diagram but also work with and trust your vector algebra.

5.2 Example

The diagram, which is not drawn to scale, shows an equilateral triangle $O A C$. The point B is the mid-point of $A C$ and the point D is the mid-point of $O C$.
Furthermore $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{A B}=$
(ii) $\quad \overrightarrow{B C}=$
(iii) $\overrightarrow{O C}=$
(iv) $\overrightarrow{O D}=$
(v) $\overrightarrow{D B}=$
(vi) Given that $\overrightarrow{D B}=k \overrightarrow{O A}$
state the value of k

Teaching Video : http://www.NumberWonder.co.uk/v9009/5a.mp4 (Part 1)
http://www.NumberWonder.co.uk/v9009/5b.mp4 (Part 2)

Complete the example above after watch the teaching videos.

5.3 Exercise

$$
\begin{aligned}
& \text { Any solution based entirely on graphical } \\
& \text { or numerical methods is not acceptable. } \\
& \text { Make the method used clear. } \\
& \text { Marks available : } 50
\end{aligned}
$$

Question 1

The diagram, which is not drawn to scale, shows a rectangle $O A B C$ with

$$
\overrightarrow{O A}=\boldsymbol{a} \text { and } \overrightarrow{O B}=\boldsymbol{b}
$$

The point X is the mid-point of $A B$.

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{C B}=$
(ii) $\overrightarrow{A B}=$
(iii) $\overrightarrow{A X}=$
(b) Work out $\overrightarrow{C X}$ by using the path.
(i) $\overrightarrow{C X}=\overrightarrow{C B}-\frac{1}{2} \overrightarrow{A B}$
(ii) $\overrightarrow{C X}=\overrightarrow{C B}-\overrightarrow{O B}+\overrightarrow{O A}+\overrightarrow{A X}$

Question 2

The diagram, which is not drawn to scale, shows a rhombus $A B C D$.
The two diagonals of the rhombus intersect at O.
The point X is the mid-point of $A D$ and the point Y is the mid-point of $C D$.
Furthermore, $\overrightarrow{C O}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{D A}=$
(ii) $\overrightarrow{D X}=$
(iii) $\overrightarrow{C D}=$
(iv) $\overrightarrow{Y X}=$
(b) Given that $\overrightarrow{Y X}=k \overrightarrow{C A}$ state the value of k
(c) If $|\boldsymbol{a}|=15$ and $|\boldsymbol{b}|=7$, determine $|\boldsymbol{a}+\boldsymbol{b}|$ using the fact that the diagonals of a rhombus are mutually perpendicular.

Question 3

The diagram, which is not drawn to scale, shows a triangle $\mathrm{O} A Y$.
The point B is the mid-point of $O Y$.
Furthermore, $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{O Y}=$
(ii) $\overrightarrow{A Y}=$
X is the mid-point of $O A$
(b) Write down, in terms of \boldsymbol{a} and \boldsymbol{b}, an expression for $\overrightarrow{X B}$
(c) Show that $\overrightarrow{X B}$ is parallel to $\overrightarrow{A Y}$, by writing a relationship between them of the form $\overrightarrow{X B}=k \overrightarrow{A Y}$
(d) If $\overrightarrow{O A}$ and $\overrightarrow{A Y}$ are mutually perpendicular and $|\boldsymbol{a}|=|\boldsymbol{b}|=3 \mathrm{~cm}$ what is $|\overrightarrow{A Y}|$?

Question 4

The diagram, which is not drawn to scale, shows a regular hexagon $A B C D E F$. The spokes of the hexagon intersect at O.
Furthermore, $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{D B}=$
(ii) $\quad \overrightarrow{D C}=$
(iii) $\overrightarrow{F C}=$
(iv) $\overrightarrow{F D}=$
[4 marks]

The point X is the mid-point of $F A$.
(b) Write down, in terms of \boldsymbol{a} and \boldsymbol{b}, an expression for $\overrightarrow{D X}$
(c) If the hexagon has sides of length 4.3 cm , what is $|\overrightarrow{D B}|$? HINT : The Cosine Rule

Question 5

The diagram, which is not drawn to scale, shows an equilateral triangle $A P B$ and an isosceles triangle, $O A B$, where $|\overrightarrow{O A}|=|\overrightarrow{A B}|$
The point M is the mid-point of $P B$.
$\overrightarrow{A N}=\frac{1}{3} \overrightarrow{A B}$
Furthermore, $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$

(a) Express the following vectors in terms of \boldsymbol{a} and \boldsymbol{b};
(i) $\overrightarrow{O P}=$
(ii) $\overrightarrow{P B}=$
(iii) $\overrightarrow{O M}=$
(iv) $\overrightarrow{A N}=$
(v) $\overrightarrow{O N}=$
[1, 1, 1, 1, 2 marks]
(b) Given that $\overrightarrow{O M}=k \overrightarrow{O N}$ find k.

Question 6

The diagram, which is not drawn to scale, shows a quadrilateral $O A B C$ in which, $|\overrightarrow{O A}|=2 \boldsymbol{a},|\overrightarrow{O B}|=2 \boldsymbol{b}$ and $|\overrightarrow{O C}|=2 \boldsymbol{c}$
Points P, Q, R and S are the midpoints of the sides $O A, A B, B C$ and $C O$ respectively.

(a) Express the following vectors in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c};
(i) $\overrightarrow{A B}=$
(ii) $\overrightarrow{B C}=$
(iii) $\overrightarrow{P Q}=$
(iv) $\overrightarrow{Q R}=$
(v) $\overrightarrow{P S}=$
[1, 1, 1, 2, 1 marks]
(b) Describe the relationship between $\overrightarrow{Q R}$ and $\overrightarrow{P S}$
(c) What sort of quadrilateral is $P Q R S$?

Question 7

In the diagram, $O X Y Z$ is a parallelogram.
M is the mid-point of $\overrightarrow{X Y}$
Furthermore, $\overrightarrow{O X}=\binom{8}{0} \quad$ and $\quad \overrightarrow{O Z}=\binom{-2}{6}$

(i) Write down the vectors $\overrightarrow{X M}$ and $\overrightarrow{X Z}$
(ii) Given that $\overrightarrow{O N}=v \overrightarrow{O M}$ write down in terms of v the vector $\overrightarrow{O N}$
(iii) Given that $\overrightarrow{O N}=\overrightarrow{O X}+w \overrightarrow{X Z}$ find in terms of w the vector $\overrightarrow{O N}$
(iv) Solve two simultaneous equations to find v and w
(v) Explain the significance of your solution.
[1 mark]

