Chapter 6

6.1 Vector Ratios

When a point M is described as being the midpoint of the line $A B$ the length of the line is dived in a ratio of,

$$
\begin{aligned}
A M & : M B \\
\frac{1}{2} & : \frac{1}{2}
\end{aligned}
$$

or, as integers are often preferred, by multiplying through by 2 ,
$A M: M B$
$1: 1$
Of course, there is no reason why other ratios could not be used such as, for example, a point X that divides the line $A B$ in the ratio,

$$
\begin{aligned}
A X & : X B \\
3 & : 2
\end{aligned}
$$

which could also be written, upon dividing through by 5 ,

$$
\begin{aligned}
A X & : X B \\
\frac{3}{5} & : \frac{2}{5}
\end{aligned}
$$

This tells the reader that X is $\frac{3}{5}$ of the way along line $A B$ from X

If, for example, $\overrightarrow{A B}=15 s+10 t$ then $\overrightarrow{A X}=\frac{3}{5} \overrightarrow{A B}$

$$
\begin{aligned}
& =\frac{3}{5}(15 s+10 t) \\
& =9 s+6 t
\end{aligned}
$$

$\square \square \square \Delta \Delta \square \square \square \Delta \Delta \square \square \Delta \Delta \square \square \square \Delta \Delta \square \square \Delta \Delta$
$\square \square \square \Delta \Delta \square \square \square \Delta \Delta \square \square \square \Delta \Delta+\square \square \square \Delta \Delta \square \square \square \Delta \Delta$
$\square \square \square \Delta \Delta \square \square \square \Delta \Delta \square \square \square \Delta \Delta$: $\square \square \square \Delta \Delta \square \square \square \Delta \Delta$
$3: 2$

|| $3: 2$
|| $15 s+10 t$
|| $5(3 s+2 t)$
l| $3(3 s+2 t)+2(3 s+2 t)$
|| $3(3 s+2 t): 2(3 s+2 t)$
|| $9 s+6 t: 6 s+4 t$

An interesting similarity between ratios of squares and triangles on the one hand and ratios of vectors \boldsymbol{s} and \boldsymbol{t} in the other

6.2 A Recent Examination Question

GCSE Examination Question from January 2020, Paper 2H, Q23

Diagram NOT accurately drawn
$A B C$ is a triangle in which the midpoint of $B C$ is M and P is a point on $A M$.

$$
\overrightarrow{A B}=4 \boldsymbol{a} \quad \overrightarrow{A C}=2 \boldsymbol{b} \quad \overrightarrow{A P}=\frac{3}{2} \boldsymbol{a}+\frac{3}{4} \boldsymbol{b}
$$

Find the ratio $A P: P M$

Teaching Video : http://www.NumberWonder.co.uk/v9009/6.mp4

Watch the teaching video then write out a solution to the question.

6.3 Exercise

$$
\begin{aligned}
& \text { Any solution based entirely on graphical } \\
& \text { or numerical methods is not acceptable. } \\
& \text { Make the method used clear. } \\
& \text { Marks available : } 30
\end{aligned}
$$

Question 1

$A B C$ is a triangle in which the midpoint of $B C$ is M and P is a point on $A M$.

$$
\overrightarrow{A B}=5 \boldsymbol{a} \quad \overrightarrow{A C}=3 \boldsymbol{b} \quad \overrightarrow{A P}=\frac{5}{6} \boldsymbol{a}+\frac{1}{2} \boldsymbol{b}
$$

Find the ratio $A P: P M$

Question 2

$O A Y B$ is a quadrilateral, with the diagonals $A B$ and $O Y$ intersecting at point X.
The ratio $A X: X B=1: 2$

$$
\overrightarrow{O A}=3 \boldsymbol{a} \quad \overrightarrow{O B}=6 \boldsymbol{b} \quad \overrightarrow{B Y}=5 \boldsymbol{a}-\boldsymbol{b}
$$

(i) Use vector algebra to show that $\overrightarrow{A X}=-\boldsymbol{a}+2 \boldsymbol{b}$
(ii) Find the ratio $O X: X Y$

Question 3

$O A B C$ is a parallelogram with $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O C}=\boldsymbol{c}$
X is the midpoint of the line $C A$.
$O A D$ is a straight line.
Given that $\overrightarrow{X D}=3 \boldsymbol{a}-\frac{1}{2} \boldsymbol{c}$ find the ratio $O A: A D$

Question 4

GCSE Examination Question from January 2016, Paper 3H, Q23

$O A B$ is a triangle
P is the point on $O A$ such that $O P: P A=2: 1$
C is the point such that B is the midpoint of $O C$
M is the midpoint of $A B$

$$
\overrightarrow{O A}=6 \boldsymbol{a} \quad \overrightarrow{O B}=4 \boldsymbol{b}
$$

Show that $P M C$ is a straight line

Question 5

In the diagram $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=3 \boldsymbol{b}$
$O A: A X=1: 1, \quad O B: B Y=3: 1$ and $B M: M X=1: 4$
(i) Show that $\overrightarrow{B M}=\frac{2}{5} \boldsymbol{a}-\frac{3}{5} \boldsymbol{b}$
(ii) Use a vector method to find $Y M$: $M A$ Show your working clearly.

Question 6

GCSE Examination Question from January 2017, Paper 3HR, Q23

The diagram shows trapezium $A B C D$
$B C$ is parallel to $A D, A D=3 B C, \overrightarrow{A B}=\boldsymbol{b}$ and $\overrightarrow{B C}=\boldsymbol{c}$
(a) Find, in terms of \boldsymbol{b} and \boldsymbol{c}, the vector $\overrightarrow{C D}$
Give your answer in its simplest form.

The point P lies on the line $A C$ such that $A P: P C=2: 1$
(b) Is $B P D$ a straight line ?

Show your working clearly.

