Chapter 7

7.1 Change of Basis

When a point is specified, such as $P(3,4)$, it can be thought of as a vector description of P 's location from the origin. Such vectors that are tied to a location, the origin in this case, are called position vectors, rather than free vectors.

$$
\boldsymbol{p}=\binom{3}{4} \quad \text { or } \quad \boldsymbol{p}=3 \boldsymbol{i}+4 \boldsymbol{j}
$$

The description of \boldsymbol{p} in the style $\boldsymbol{p}=3 \boldsymbol{i}+4 \boldsymbol{j}$ emphasises that the vector \boldsymbol{p} is expressed in terms of two other vectors; the unit vectors \boldsymbol{i} and \boldsymbol{j} in the x and y-axis directions respectively. The vectors \boldsymbol{i} and \boldsymbol{j} are said to form a basis for the Cartesian coordinate system. Any other location on the $X Y$ plane can be specified using some combination of \boldsymbol{i} and \boldsymbol{j}.
Other vectors can be used as a basis for a different coordinate system.

7.2 Example

A coordinate system has basis vectors $\boldsymbol{A}=\binom{2}{5}$ and $\boldsymbol{B}=\binom{7}{3}$
(i) Write $s=6 \boldsymbol{A}+4 \boldsymbol{B}$ in the form $s=k\binom{20}{21}$ for some constant k.
[1 mark]
(ii) Write $t=9 \boldsymbol{A}+6 \boldsymbol{B}$ in the form $\boldsymbol{t}=K\binom{20}{21}$ for some constant K.
[1 mark]
(iii) What do your answers to part (i) and (ii) show?
(iv) Show that \boldsymbol{s} and \boldsymbol{t} are parallel for all other vectors \boldsymbol{A} and \boldsymbol{B}.
(In other words, \boldsymbol{s} and \boldsymbol{t} are parallel in any linear coordinate system)

Teaching Video : http://www.NumberWonder.co.uk/v9009/7.mp4

<= Watch the video, complete the above example.

7.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable.
> Make the method used clear.
> Marks available : 40

Question 1

Two vectors, \boldsymbol{E} and \boldsymbol{Z}, are $\boldsymbol{E}=\binom{2}{5}$ and $\boldsymbol{Z}=\binom{3}{4}$
(i) Write $\boldsymbol{a}=9 \boldsymbol{E}+3 \boldsymbol{Z}$ in the form $\boldsymbol{a}=k\binom{9}{19}$ for some constant k.
[1 mark]
(ii) Write $\boldsymbol{b}=15 \boldsymbol{E}+5 \boldsymbol{Z}$ in the form $\boldsymbol{b}=K\binom{9}{19}$ for some constant K.
[1 mark]
(iii) What do your answers to part (i) and (ii) show?
[1 mark]
(iv) Show that \boldsymbol{a} and \boldsymbol{b} are parallel for all other vectors \boldsymbol{E} and \boldsymbol{Z}.
[2 marks]

Question 2

Two vectors, \boldsymbol{E} and \boldsymbol{T}, are given by $\boldsymbol{E}=\binom{7}{5}$ and $\boldsymbol{T}=\binom{2}{3}$
(i) Write $\boldsymbol{p}=8 \boldsymbol{E}-20 \boldsymbol{T}$ in the form $\boldsymbol{p}=k\binom{4}{-5}$ for some constant k.
[1 mark]
(ii) Write $\boldsymbol{h}=6 \boldsymbol{E}-15 \boldsymbol{T}$ in the form $\boldsymbol{h}=K\binom{4}{-5}$ for some constant K.
[1 mark]
(iii) Show that \boldsymbol{p} and \boldsymbol{h} are parallel for all vectors \boldsymbol{E} and \boldsymbol{T}.

Question 3

Two vectors, \boldsymbol{X} and \boldsymbol{Y} are parallel if one can be written as a multiple of the other. In each question decide if the two vectors given are parallel or not.
For those that are parallel, write in the form $\boldsymbol{X}=k \boldsymbol{Y}$ for some constant k.
(i) $\quad X=\binom{-15}{9}$
$\boldsymbol{Y}=\binom{-5}{3}$
[1 mark]
(ii) $\quad X=4 i-2 j \quad Y=4 i+2 j$
[1 mark]
(iii) $\quad \boldsymbol{X}=\left(\begin{array}{c}8 \\ -4 \\ 6\end{array}\right) \quad \boldsymbol{Y}=\left(\begin{array}{c}12 \\ -6 \\ 9\end{array}\right)$
[1 mark]
(iv) $\boldsymbol{X}=\binom{16}{9} \quad \boldsymbol{Y}=\binom{4}{3}$
[1 mark]
(v) $\quad X=\binom{9}{-6} \quad Y=\binom{12}{-8}$
[1 mark]
(vi) $\quad \boldsymbol{X}=14 \boldsymbol{i}-21 \boldsymbol{j} \quad \boldsymbol{Y}=21 \boldsymbol{i}-14 \boldsymbol{j}$
(vii) $\quad \boldsymbol{X}=3 \boldsymbol{i}-\boldsymbol{j} \quad \boldsymbol{Y}=-6 \boldsymbol{i}+2 \boldsymbol{j}$
[1 mark]
(viii) $\quad \boldsymbol{X}=4 \boldsymbol{a}-12 \boldsymbol{b} \quad \boldsymbol{y}=6 \boldsymbol{a}-18 \boldsymbol{b}$
[1 mark]
(ix) $\quad \boldsymbol{X}=15 a \quad \boldsymbol{a}=16 a$
[1 mark]
(x$) \quad X=\boldsymbol{i}-\boldsymbol{j} \quad \boldsymbol{Y}=-\boldsymbol{i}+\boldsymbol{j}$
[1 mark]
(xi) $\boldsymbol{X}=\left(\begin{array}{c}1 \\ -7 \\ 3 \\ 0 \\ 11\end{array}\right) \quad \boldsymbol{Y}=\left(\begin{array}{c}-2 \\ 14 \\ 6 \\ 0 \\ -22\end{array}\right) \quad$ Five dimensions is blowing my mind !
[1 mark]
(xii) $\quad \boldsymbol{X}=\frac{1}{2} a+2 b \quad \boldsymbol{Y}=\frac{1}{3} a+3 b$

Question 4

\#VectorsFascinatingFact
Here is a fascinating fact about vectors !
The vectors $\boldsymbol{X}=\binom{a}{b}$ and $\boldsymbol{Y}=\binom{c}{d}$
are mutually perpendicular (each at 90° to the other) if and only if $a c+b d=0$
(a) For each of the following pairs of vectors state if they are mutually perpendicular or not.
(i) $\quad \boldsymbol{X}=\binom{3}{7}$ and $\boldsymbol{Y}=\binom{-7}{3}$
[1 mark]
(ii) $\quad \boldsymbol{X}=\binom{0}{17} \quad$ and $\quad \boldsymbol{Y}=\binom{6}{0}$
[1 mark]
(iii) $\quad \boldsymbol{X}=\binom{0.5}{16}$ and $\boldsymbol{Y}=\binom{8}{0.25}$
[1 mark]
(b) Given that the following two vectors are mutually perpendicular.

$$
X=\binom{-6}{11} \quad Y=\binom{w}{9}
$$

Find the value of w.

Question 5

Consider the vector $\quad X=\binom{3}{-4}$
(i) Show that $|X|=5$
[1 mark]
(ii) Write down a vector of magnitude 5 which is perpendicular to X
(iii) Write down another vector of magnitude 5 which is perpendicular to \boldsymbol{X}

Question 6

Let $\quad \boldsymbol{a}=5 \boldsymbol{p}+4 \boldsymbol{q} \quad \boldsymbol{b}=-2 \boldsymbol{p}+2 \boldsymbol{q} \quad$ and $\quad \boldsymbol{c}=\boldsymbol{p}+6 \boldsymbol{q}$
(i) Find an expression for vector, \boldsymbol{v}, in terms of \boldsymbol{p} and \boldsymbol{q}, if $\boldsymbol{v}=5 \boldsymbol{a}-\boldsymbol{b}$ Your expression should not contain any brackets.

```
HINT : v=5 a - b
v=5(5p+4q)-(-2\boldsymbol{p}+2\boldsymbol{q})\mathrm{ Be careful with the double minus.}
```

[1 marks]
(ii) Find an expression for vector, \boldsymbol{w}, in terms of \boldsymbol{p} and \boldsymbol{q}, if $\boldsymbol{w}=8 \boldsymbol{a}-\boldsymbol{c}$. Your expression should not contain any brackets.
(iii) Prove that the vectors \boldsymbol{v} and \boldsymbol{w} are parallel.

Question 7

Let $\quad \boldsymbol{d}=\boldsymbol{p}+3 \boldsymbol{q} \quad \boldsymbol{e}=\boldsymbol{p}-3 \boldsymbol{q} \quad$ and $\quad \boldsymbol{f}=2 \boldsymbol{p}-\boldsymbol{q}$
(i) Find an expression for vector, \boldsymbol{r}, in terms of \boldsymbol{p} and \boldsymbol{q} only, if $\boldsymbol{r}=3 \boldsymbol{d}+6 \boldsymbol{e}$. Your expression should not contain any brackets.
(ii) Find an expression for vector, \boldsymbol{s}, in terms of \boldsymbol{p} and \boldsymbol{q} only, if $\boldsymbol{s}=-2 \boldsymbol{d}+8 \boldsymbol{f}$. Your expression should not contain any brackets.

[1 marks]

(iii) Find an expression for vector, \boldsymbol{t}, in terms of \boldsymbol{p} and \boldsymbol{q} only, if $\boldsymbol{t}=4 \boldsymbol{e}-3 \boldsymbol{f}$. Your expression should not contain any brackets.
(iv) Which of the vectors $\boldsymbol{r}, \boldsymbol{s}$ and \boldsymbol{t} are parallel ? Prove your answer.

