Chapter 8

8.1 The Ratio Theorem

A situation that repeatedly occurs in vectors problems is that of a line $A B$ being divided in a given ratio $m: u$. The Ratio Theorem generalises the resulting algebraic manipulations and gives a formula that can be used to skip through this recurring situation at a brisk pace.
The theorem makes use of the simple yet clever idea that for any line $A B$ there must be an Other point, O, "somewhere". This other point is often the origin, but it does not have to be and, indeed, part of the skill of using the ratio theorem quickly is to pick a good "other point". The other point is often on an associated diagram of which the line $A B$ is a part but, again, it does not have to be.

The Ratio Theorem

If the point P divides the line segment $A B$ in the ratio $m: u$ then,

$$
\overrightarrow{O P}=\overrightarrow{O A}+\frac{m}{u+m} \overrightarrow{A B}
$$

Proof

$$
\begin{aligned}
\overrightarrow{A P} & : \overrightarrow{P B} \\
m & : u \\
u \overrightarrow{A P} & =m \overrightarrow{P B} \\
u(\overrightarrow{A O}+\overrightarrow{O P}) & =m(\overrightarrow{P O}+\overrightarrow{O B}) \\
u \overrightarrow{A O}+u \overrightarrow{O P} & =m \overrightarrow{P O}+m \overrightarrow{O B} \\
u \overrightarrow{O P}-m \overrightarrow{P O} & =-u \overrightarrow{A O}+m \overrightarrow{O B} \\
u \overrightarrow{O P}+m \overrightarrow{O P} & =u \overrightarrow{O A}+m(\overrightarrow{O A}+\overrightarrow{A B}) \\
(u+m) \overrightarrow{O P} & =(u+m) \overrightarrow{O A}+m \overrightarrow{A B} \\
\overrightarrow{O P} & =\overrightarrow{O A}+\frac{m}{u+m} \overrightarrow{A B}
\end{aligned}
$$

8.2 Example

A line segment $A B$ has endpoints $A(1,4)$ and $B(11,19)$
A point P on the line segment $A B$ is such that $A P: P B=3: 2$.
Find the coordinates of P

Teaching Video :http://www.NumberWonder.co.uk/v9009/8.mp4

After watching the video write out your solution.

108

To help remember the ratio theorem notice that $m u$ is the noise made by a cat and the fraction in the theorem $\frac{m}{u+m}$ is a "sort of" spelling of the word mum

8.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable. Make the method used clear. Marks available : 40

Question 1

A line segment $A B$ has endpoints $A(7,3)$ and $B(42,59)$
A point P on the line segment $A B$ is such that $A P: P B=4: 3$
Find the coordinates of P

Question 2

$O A B C$ is a trapezium with $A B$ parallel to $O C$ and $A B=5 O C$. P divides $A B$ such that $A P: P B=3: 2$

$$
\overrightarrow{O C}=\boldsymbol{c} \text { and } \overrightarrow{C B}=\boldsymbol{b}
$$

(i) Find $\overrightarrow{O A}$ in terms of \boldsymbol{c} and \boldsymbol{b}
(ii) By using the Ratio Theorem, find $\overrightarrow{O P}$ in terms of \boldsymbol{c} and \boldsymbol{b}

Question 3

$O A B$ is a triangle with $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$
C is the midpoint of $O A$ and P is the point on $A B$ such that $A P: P B=3: 1$
D is the point such that $\overrightarrow{O B}=2 \overrightarrow{B D}$
(i) Use the Ratio Theorem to find $\overrightarrow{O P}$ in terms of \boldsymbol{a} and \boldsymbol{b}
(ii) Use $\overrightarrow{C P}=\overrightarrow{C O}+\overrightarrow{O P}$ to find $\overrightarrow{C P}$ in terms of \boldsymbol{a} and \boldsymbol{b}
(iii) Use $\overrightarrow{P D}=\overrightarrow{P O}+\overrightarrow{O D}$ to find $\overrightarrow{P D}$ in terms of \boldsymbol{a} and \boldsymbol{b}
(iv) Prove that the points C, P and D lie on the same straight line
(v) Determine the ratio $C P: P D$

Question 4

$O A B$ is a triangle in which $\overrightarrow{O A}=3 \boldsymbol{a}$ and $\overrightarrow{O B}=\boldsymbol{b}$
Q is the point on $O A$ such that $O A=3 O Q$
P is the point on $A B$ such that $A B=3 P B$
(i) Show how to use the Ratio Theorem to express $\overrightarrow{O P}$ in terms of \boldsymbol{a} and \boldsymbol{b}
(ii) Show that $\overrightarrow{Q P}=k \overrightarrow{O B}$ where k is an integer
(iii) State two things that your answer to part (ii) tells you about the relationship between the line segments $Q P$ and $O B$.

Question 5

Specimen GCSE Examination Question for the 2018 Examinations

$O A B$ is a triangle with $\overrightarrow{O A}=2 \boldsymbol{a}$ and $\overrightarrow{O B}=2 \boldsymbol{b}$
P is the point on $A B$ such that $A P: P B=5: 3$
$\overrightarrow{O P}=k(3 \boldsymbol{a}+5 \boldsymbol{b})$ where k is a scalar quantity
Find the value of k

Question 6

$O A B$ is a triangle where M is the mid-point of $O B$
P and Q are points on $A B$ such that $A P=P Q=Q B$
$\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O B}=2 \boldsymbol{b}$
(a) Find, in terms of \boldsymbol{a} and \boldsymbol{b}, expressions for
(i) $\overrightarrow{B A}$
(ii) $\overrightarrow{M Q}$
[2 marks]
(iii) $\overrightarrow{O P}$
(b) What can you deduce about quadrilateral $O M Q P$?

Give a reason for your answer

Question 7

$C D E F$ is a quadrilateral with $\overrightarrow{C D}=\boldsymbol{a} \quad \overrightarrow{D E}=\boldsymbol{b}$ and $\overrightarrow{F C}=\boldsymbol{a}-\boldsymbol{b}$
(i) Express $\overrightarrow{C E}$ in terms of \boldsymbol{a} and \boldsymbol{b}
(ii) Prove that $\overrightarrow{F E}$ is parallel to $\overrightarrow{C D}$
M is the midpoint of $D E$
(iii) Express $\overrightarrow{F M}$ in terms of \boldsymbol{a} and \boldsymbol{b}
X is the point on $F M$ such that $F X: X M=4: 1$
(iv) Prove that C, X and E lie on the same straight line

Question 8

GCSE Examination Question from May 2014, Paper 3HR, Q21

$O A B C$ is a parallelogram with $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O C}=\boldsymbol{c}$
P is the point on $A B$ such that $A P: P B=1: 3$
Q is the point on $O C$ such that $O Q: Q C=2: 1$
Find, in terms of \boldsymbol{a} and $\boldsymbol{c}, \overrightarrow{P Q}$
Give your answer in its simplest form.

