Lesson 3

Simultaneous Equations : GCSE

3.1 Factorising Quadratics

The word *factorise* in this context means *make brackets*.

When asked to factorise a quadratic such as, $x^2 + 11x + 24$, the task is to find an equivalent expression of the form (x + a)(x + b) where a and b are two real numbers that are to be found.

3.2 Theory & Practice Video

Teaching Video : http://www.NumberWonder.co.uk/v9013/3.mp4

The Theory :

Practice #1 : Factorise, $x^2 + 11x + 24$

Practice #2: Factorise, $x^2 + 3x - 10$

3.3 Exercise

Question 1 Factorise:

Factorise;	,		
(i)	$x^2 + 10x + 21$	(ii)	$x^2 + 11x + 30$

(iii)
$$x^2 + 9x + 14$$
 (iv) $x^2 + 8x + 15$

(v)
$$x^2 + 14x + 33$$
 (vi) $x^2 + 6x + 9$

(vii)
$$x^2 + 10x + 9$$
 (viii) $x^2 + 14x + 13$

(ix)
$$x^2 + 14x + 48$$
 (x) $x^2 + 18x + 77$

Question 2

Factorise;

(i)
$$x^2 + 2x - 3$$
 (ii) $x^2 + 5x - 14$
(iii) $x^2 + 9x - 22$ (iv) $x^2 + 2x - 15$

(v)
$$x^2 - 2x - 15$$
 (vi) $x^2 - 4x - 21$

(vii)
$$x^2 - 8x - 20$$
 (viii) $x^2 - 8x - 33$

$$(ix)$$
 $x^2 - 3x - 40$ (x) $x^2 - 6x - 40$

Question 3

Factorise;

(i)
$$x^2 - 5x + 6$$
 (ii) $x^2 - 8x + 15$
(iii) $x^2 - 10x + 21$ (iv) $x^2 - 9x + 20$

(v)
$$x^2 - 10x + 25$$
 (vi) $x^2 - 7x + 6$

(vii)
$$x^2 - 10x + 16$$
 (viii) $x^2 - 8x + 12$

(ix)
$$x^2 - 15x + 44$$
 (x) $x^2 - 14x + 49$

Question 4

Factorise;

(i) $x^2 + 15x + 50$ (ii) $x^2 + 5x - 50$

(iii) $x^2 - 15x + 50$

(iv) $x^2 - 5x - 50$

Question 5

A quadratic has two real roots, *a* and *b*. The sum of the roots is 13. The product of the roots is 42. What are the two roots ?

Question 6

A quadratic has two real roots, *a* and *b*. The sum of the roots is 5. The product of the roots is -204. What are the two roots ?

> This document is Licensed for use by staff and students at **Shrewsbury School, England** To obtain a licence please visit www.NumberIsAll.com © 2020 Number Is All