5.1 Examination Style Questions

The Question: Solve the simultaneous equations

$$
\begin{array}{ll}
y=x^{2} & \text { This a quadratic curve } \\
y=2 x+3 & \text { This is a straight line }
\end{array}
$$

The Solution: Using the method of substitution.

$$
x^{2}=2 x+3
$$

- Rearranging equations into the form $f(x)=0$

$$
x^{2}-2 x-3=0
$$

- Factorising quadratics

$$
(x+1)(x-3)=0
$$

- Solving quadratic equations

$$
\begin{gathered}
\text { Either } x+2=0 \text { or } x-3=0 \\
x=-1 \text { or } x=3
\end{gathered}
$$

But this is not the final answer !
The final answer is the points where the straight line intersects the quadratic curve. Use the equation of the line $y=2 x+3$ with x is 2 and then with x is 3 to get,

The Final Solutions : ($-1,1$) or $(3,9)$

5.2 Understanding What Has Been Achieved

On the graph below, the quadratic curve $y=x^{2}$ has been plotted.
So too, has the straight line, $y=2 x+3$

The line meets the curve at $(-1,1)$ and also at $(3,9)$!

5.3 Exercise

Use the method of substitution to obtain a quadratic equation in the single variable, x. Solve your equation, and find the possible pairs of values for x and y.
(i) $y=x^{2}$
$y=8 x-12$
(ii)

$$
\begin{aligned}
& y=x^{2} \\
& y=11 x-28
\end{aligned}
$$

(iii) $y=x^{2}$

$$
y=2 x+24
$$

(iv) $\begin{aligned} y & =x^{2}+10 \\ y & =4-7 x\end{aligned}$
$y=4-7 x$
(v) $y=x^{2}-14$
$y=2 x+21$
(vi) $y=x^{2}+3$
$y=30-6 x$
(vii) $y=x^{2}+2 x$
$y=5 x+28$
(viii) $\begin{aligned} y & =x^{2}-4 x+2 \\ y & =7 x-8\end{aligned}$
(ix) $y=x^{2}+3 x-10$
$y=4 x+20$
(\mathbf{x}) $y=x^{2}$
$y=7 x-12$

5.4 Examination Question

GCSE, November 2006, paper 3H, Q18
Solve the simultaneous equations

$$
\begin{gathered}
y=x^{2} \\
y=2 x+15
\end{gathered}
$$

