A-Level Pure Mathematics

Year 1 and Year 2

Vectors I I

VECTORS II

Chapter 1

A-Level Pure Mathematics
 Vectors II : Year 1 and Year 2

1.1 Vectors and Kinematics

Example 1

A particle moves with initial velocity $(7 \boldsymbol{i}+6 \boldsymbol{j}) \mathrm{ms}^{-1}$
It is accelerating at $(-3 \boldsymbol{i}+5 \boldsymbol{j}) \mathrm{ms}^{-2}$
(i) What is its velocity when $t=4$ seconds?
(ii) What is its speed when $t=4$ seconds?

Example 2

A particle is moving with initial velocity ($-2 \boldsymbol{i}+\boldsymbol{j}$) ms^{-1}
A constant acceleration of $(\boldsymbol{i}-2 \boldsymbol{j}) \mathrm{ms}^{-2}$ acts upon it.
(i) What is its displacement vector over the next 5 seconds?
(ii) If it was initially at position ($3 \boldsymbol{i}+4 \boldsymbol{j}$), where is it when t is 5 seconds ?

1.2 Exercise

Question 1

A particle is initially moving with velocity ($3 \boldsymbol{i}+\boldsymbol{j}$) ms^{-1}
It is constantly accelerating at $(-\boldsymbol{i}+2 \boldsymbol{j}) \mathrm{ms}^{-2}$
(i) What is its velocity when $t=7$ seconds?
(ii) What is its speed when $t=7$ seconds?

Question 2

A particle is moving with initial velocity ($3 \boldsymbol{i}+2 \boldsymbol{j}$) ms^{-1}
A constant acceleration of ($4 \boldsymbol{i}-\mathbf{j}$) ms^{-2} acts upon it.
(i) What is its displacement vector over the next 3 seconds?
(ii) If initially at position ($-20 \boldsymbol{i}+2 \boldsymbol{j}$), what is its position when t is 3 seconds?

Question 3

M1 examination question, May 2010, Q1 with Hint added A particle P is moving with constant velocity $(-3 \boldsymbol{i}+2 \boldsymbol{j}) \mathrm{ms}^{-1}$
At time $t=6 \mathrm{~s} P$ is at the point with position vector $(-4 \boldsymbol{i}-7 \boldsymbol{j}) \mathrm{m}$ Find the distance of P from the origin at time $t=2 \mathrm{~s}$

HINT : This diagram may help...

Question 4

M1 examination question, January 2009, Q1
A particle P moves with constant acceleration $(2 \boldsymbol{i}-5 \boldsymbol{j}) \mathrm{ms}^{-2}$
At time $t=0 P$ has speed $u \mathrm{~ms}^{-1}$
At time $t=3 \mathrm{~s}, P$ has velocity $(-6 \boldsymbol{i}+\boldsymbol{j}) \mathrm{ms}^{-1}$
Find the value of u

Question 5

M1 examination question, January 2008, Q6
[In this question, the unit vectors \boldsymbol{i} and \boldsymbol{j} are due east and due north respectively]

A particle P is moving with constant velocity $(-5 \boldsymbol{i}+8 \boldsymbol{j}) \mathrm{ms}^{-1}$
(a) Find the speed of P
(b) Find the direction of motion of P, giving your answer as a bearing

At time $t=0 P$ is at the point A with position vector $(7 \boldsymbol{i}-10 \boldsymbol{j}) \mathrm{m}$ relative to a fixed origin O. When $t=3 \mathrm{~s}$, the velocity of P changes and it moves with velocity $(u \boldsymbol{i}+v \boldsymbol{j}) \mathrm{ms}^{-1}$, where u and v are constants. After a further 4 s , it passes through O and continues to move with velocity $(u \boldsymbol{i}+v \boldsymbol{j}) \mathrm{ms}^{-1}$
(c) Find the values of u and v
(d) Find the total time taken for P to move from A to a position which is due south of A

HINT : This diagram may help...

Question 6

M1 examination question, January 2010, Q7
[In this question, the unit vectors \boldsymbol{i} and \boldsymbol{j} are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin]

A ship S is moving along a straight line with constant velocity.
At time t hours the position vector of S is $s \mathrm{~km}$
When $t=0, \boldsymbol{s}=9 \boldsymbol{i}-6 \boldsymbol{j}$
When $t=4, s=21 \boldsymbol{i}+10 \boldsymbol{j}$
(a) Find the speed of S
(b) Find the direction in which S is moving, giving your answer as a bearing
(c) Show that $\boldsymbol{s}=(3 t+9) \boldsymbol{i}+(4 t-6) \boldsymbol{j}$

A lighthouse L is located at the point with position vector $(18 \boldsymbol{i}+6 \boldsymbol{j}) \mathrm{km}$ When $t=T$, the ship S is 10 km from L.
(d) Find the possible values of T.

Question 7

M1 examination question, June 2007, Q7
A boat B is moving with constant velocity. At noon, B is at the point with position vector $(3 \boldsymbol{i}-4 \boldsymbol{j}) \mathrm{km}$ with respect to a fixed origin O. At 14:30 on the same day, B is at the point with position vector $(8 \boldsymbol{i}+11 \boldsymbol{j}) \mathrm{km}$
(a) Find the velocity of b, giving your answer in the form $p \boldsymbol{i}+q \boldsymbol{j}$

At time t hours after noon, the position vector of B is $\boldsymbol{b} \mathrm{km}$
(b) Find, in terms of t, an expression for \boldsymbol{b}

Another boat C is also moving with constant velocity. The position vector of C, $\boldsymbol{c} \mathrm{km}$, at time t hours after noon, is given by

$$
\boldsymbol{c}=(-9 \boldsymbol{i}+20 \boldsymbol{j})+t(6 \boldsymbol{i}+\lambda \boldsymbol{j})
$$

where λ is a constant.

Given that C intercepts B,
(c) find the value of λ
(d) show that, before C intercepts B, the boats are moving with the same speed

