Chapter 2

A-Level Pure Mathematics
Vectors II : Year 1 and Year 2

2.1 The Vector Between Two points

Statement :

$$
\overrightarrow{A B}=\boldsymbol{b}-\boldsymbol{a}
$$

Proof :
The result is obvious from a study of the following diagram

A more mathematical proof is to argue as follows;

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B} \\
& \overrightarrow{A B}=-\overrightarrow{O A}+\overrightarrow{O B} \\
& \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \\
& \overrightarrow{A B}=\boldsymbol{b}-\boldsymbol{a}
\end{aligned}
$$

In words we say that $\overrightarrow{A B}$ is \boldsymbol{b} relative to \boldsymbol{a} with the words "relative to" being the interpretation of the minus sign.
i.e. If these were displacement vectors $\overrightarrow{A B}$ is the position of \boldsymbol{b} relative to \boldsymbol{a} which tells you how to get to \boldsymbol{b} from \boldsymbol{a}.

2.2 Exercise

Question 1

A is (1,4)
B is $(7,6)$
Write down $\overrightarrow{A B}$

Question 2
C is $(-3,4)$
D is (2,3)
Write down $\overrightarrow{C D}$

Question 3

P is (7,3)
Q is $(1,2)$
Write down $\overrightarrow{P Q}$

Question 4
A is $(-1,4)$
B is $(5,9)$
Write down $\overrightarrow{A B}$

Question 5
A is $(-3,-5)$
B is (2,1)
Write down $\overrightarrow{B A}$

Question 6

A is $(5,-2)$
B is $(3,0)$
Write down $\overrightarrow{B A}$

Question 7

P is $(4,1)$
Q is $(6,3)$
Write down $\overrightarrow{Q P}$

Question 8

A is $(-1,-3)$
B is $(-5,-8)$
Write down $\overrightarrow{A B}$

Question 9

P is the point $(6,5)$ and Q is the point $(-3,3)$
Determine the vector $\overrightarrow{P Q}$
Does your vector take you from P to Q or from Q to P ?
(Draw a sketch of the situation to convince yourself that your answer is correct)

Question 10

M is the point ($7,-4$) and N is the point (11,8)

Determine the vector $\overrightarrow{M N}$

Have you worked out the position of M relative to N or of N relative to M ?
(Draw a sketch of the situation to convince yourself that your answer is correct)

Question 11

C is the point $(-7,12)$ and D is the point $(8,-3)$
Determine the position of C relative to D

Question 12

At the start of a walk, I am at the position given by $\boldsymbol{r}_{\mathrm{A}}=1.3 \boldsymbol{i}+0.4 \boldsymbol{j} \mathrm{~km}$ I walk directly, in a straight line, to $\boldsymbol{r}_{\mathbf{B}}=0.3 \boldsymbol{i}-0.7 \boldsymbol{j} \mathrm{~km}$
(i) Determine the vector that describes my walk.
(ii) By using the theorem of Pythagoras, and your part (i) answer, determine the distance that I have walked.

Question 13

Two motor boats, The Dragon, and The Runner, sit side by side upon the ocean. They then separate, each at a constant velocity.
The Dragon has velocity $\boldsymbol{V}_{\mathbf{D}}=4 \boldsymbol{i}+7 \boldsymbol{j} \mathrm{kmh}^{-1}$
The Runner has velocity $\boldsymbol{V}_{\mathbf{R}}=5 \boldsymbol{i}+5 \boldsymbol{j} \mathrm{kmh}^{-1}$
(i) Which boat is faster and by how much?
(ii) Calculate the velocity of The Dragon relative to The Runner.
(iii) Use your part (ii) answer to determine how long it takes until the two motor boats are 5 km apart.

Question 14

The velocities of particles A and B are $(u \boldsymbol{i}-7 \boldsymbol{j}) \mathrm{ms}^{-1}$ and $(5 \boldsymbol{i}+v \boldsymbol{j}) \mathrm{ms}^{-1}$ respectively. The velocity of A relative to B is $(2 \boldsymbol{i}-3 \boldsymbol{j}) \mathrm{ms}^{-1}$
Find the values of u and v.

Question 15

The velocities of two particles A and B are $(13 \boldsymbol{i}-3 \boldsymbol{j}) \mathrm{ms}^{-1}$ and $(5 \boldsymbol{i}+12 \boldsymbol{j}) \mathrm{ms}^{-1}$ respectively.
Find;
(i) the speed of B,
(ii) the velocity of B relative to A,
(iii) the angle between this relative velocity and the positive x-axis direction, giving your answer to the nearest degree.

Question 16

I am at the position $\boldsymbol{r}=7 \boldsymbol{i}+5 \boldsymbol{j} \mathrm{~m}$.
My velocity is given by $\boldsymbol{v}=2 \boldsymbol{i}+4 \boldsymbol{j} \mathrm{~ms}^{-1}$
If I have no acceleration, what is my position 4 seconds later?

Question 17

The position of a particle at time t is given by;

$$
\boldsymbol{r}=(2 t-9) \boldsymbol{i}+(t-2) \boldsymbol{j}
$$

(i) If d is the distance of \boldsymbol{r} from the origin at time t, find an expression for d that involves the square root of a quadratic equation in t. (HINT : Pythagoras)
(ii) Show, by completing the square on the quadratic, that;

$$
\frac{1}{5} d^{2}=(t-4)^{2}+1
$$

(iii) What value of t makes $\frac{1}{5} d^{2}$ as small as possible? This is the time at which the particle is closest to the origin.
(iv) What is this minimum distance?

