Chapter 2

A-Level Pure Mathematics Vectors II : Year 1 and Year 2

2.1 The Vector Between Two points

Statement :

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}$$

Proof :

The result is obvious from a study of the following diagram

A more mathematical proof is to argue as follows;

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$
$$\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$$
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \qquad \Box$$

In words we say that \overrightarrow{AB} is **b** relative to **a** with the words "relative to" being the interpretation of the minus sign.

i.e. If these were displacement vectors \overrightarrow{AB} is the position of **b** relative to **a** which tells you how to get to **b** from **a**.

2.2 Exercise

Question 1

A is (1, 4)B is (7, 6)Write down \overrightarrow{AB}

Question 2

C is (-3, 4)D is (2, 3)Write down \overrightarrow{CD}

Question 3

P is (7,3) Q is (1,2)Write down \overrightarrow{PQ}

Question 4

A is (-1, 4)B is (5, 9)Write down \overrightarrow{AB}

Question 5

A is (-3, -5)B is (2, 1)Write down \overrightarrow{BA}

Question 6

A is (5, -2)B is (3, 0)Write down \overrightarrow{BA}

Question 7

P is (4, 1) Q is (6, 3)Write down \overrightarrow{QP}

Question 8

A is (-1, -3)B is (-5, -8)Write down \overrightarrow{AB}

P is the point (6, 5) and *Q* is the point (-3, 3)

Determine the vector \overrightarrow{PQ}

Does your vector take you from P to Q or from Q to P? (Draw a sketch of the situation to convince yourself that your answer is correct)

Question 10

M is the point (7, -4) and *N* is the point (11, 8)

Determine the vector \overrightarrow{MN}

Have you worked out the position of *M* relative to *N* or of *N* relative to *M*? (Draw a sketch of the situation to convince yourself that your answer is correct)

Question 11

C is the point (-7, 12) and *D* is the point (8, -3)Determine the position of *C* relative to *D*

At the start of a walk, I am at the position given by $r_A = 1.3 i + 0.4 j$ km I walk directly, in a straight line, to $r_B = 0.3 i - 0.7 j$ km

- (i) Determine the vector that describes my walk.
- (ii) By using the theorem of Pythagoras, and your part (i) answer, determine the distance that I have walked.

Question 13

Two motor boats, *The Dragon*, and *The Runner*, sit side by side upon the ocean. They then separate, each at a constant velocity.

The Dragon has velocity $V_{\rm D} = 4 i + 7 j \, {\rm kmh^{-1}}$

The Runner has velocity $V_{\mathbf{R}} = 5 \mathbf{i} + 5 \mathbf{j} \text{ kmh}^{-1}$

(i) Which boat is faster and by how much ?

- (ii) Calculate the velocity of *The Dragon* relative to *The Runner*.
- (iii) Use your part (ii) answer to determine how long it takes until the two motor boats are 5 km apart.

The velocities of particles A and B are (ui - 7j) ms⁻¹ and (5i + vj) ms⁻¹ respectively. The velocity of A relative to B is (2i - 3j) ms⁻¹ Find the values of u and v.

Question 15

The velocities of two particles A and B are (13i - 3j) ms⁻¹ and (5i + 12j) ms⁻¹ respectively.

Find;

- (**i**) the speed of B,
- (ii) the velocity of B relative to A,
- (**iii**) the angle between this relative velocity and the positive *x*-axis direction, giving your answer to the nearest degree.

I am at the position r = 7i + 5j m. My velocity is given by v = 2i + 4j ms⁻¹ If I have no acceleration, what is my position 4 seconds later ?

Question 17

The position of a particle at time *t* is given by;

$$r = (2t - 9)i + (t - 2)j$$

- (i) If *d* is the distance of *r* from the origin at time *t*, find an expression for *d* that involves the square root of a quadratic equation in *t*.
 (HINT : Pythagoras)
- (ii) Show, by completing the square on the quadratic, that;

$$\frac{1}{5}d^2 = (t-4)^2 + 1$$

- (iii) What value of t makes $\frac{1}{5} d^2$ as small as possible ? This is the time at which the particle is closest to the origin.
- (iv) What is this minimum distance ?