Chapter 4

A-Level Pure Mathematics

 Vectors II : Year 1 and Year 2
4.1 Vectors: Topic Summary

Question 1

In a desert exercise a tank travels 12 km on a bearing of 070° from an Oasis, O, then 14 km on a bearing of 160° to a Bunker B.
(i) Provide a sketch of the tank's manovers marking on the following; $12 \mathrm{~km}, 14 \mathrm{~km}, O, \quad B, \quad 70^{\circ}, 90^{\circ}$
[2 marks]
(ii) Determine the bearing of the tank's bunker location from the Oasis.

Question 2

A regular hexagon has its six vertices marked O, A, X, Y, Z, and B as shown.

$$
\overrightarrow{O A}=\boldsymbol{a} \text { and } \overrightarrow{O B}=\boldsymbol{b}
$$

Find, in terms of \boldsymbol{a} and \boldsymbol{b}
(i) $\overrightarrow{Y X}$
(ii) $\overrightarrow{B X}$
(iii) $\overrightarrow{O Z}$

Question 3

A yacht is initially at the position, $\boldsymbol{Y}_{\boldsymbol{A}}=-3 \boldsymbol{i}-\boldsymbol{j} \mathrm{km}$.
Some time later it is at position, $\boldsymbol{Y}_{\boldsymbol{B}}=4 \boldsymbol{i}-2 \boldsymbol{j} \mathrm{~km}$.

(i) Determine the vector that describes the change in position of the yacht.
(ii) By using the theorem of Pythagoras, and your part (i) answer, determine the distance across the sea-bed that the yacht has covered.

Question 4

Two motor boats, The Chunter and The Rapid sit side by side upon the ocean.
They then separate, each at a constant velocity.
The Chunter has velocity $\boldsymbol{V}_{\boldsymbol{C}}=3 \boldsymbol{i}+5 \boldsymbol{j} \mathrm{kmh}^{-1}$
The Rapid has velocity $\boldsymbol{V}_{\boldsymbol{R}}=8 \boldsymbol{i}+4 \boldsymbol{j} \mathrm{kmh}^{-1}$
(i) Calculate the speed of The Chunter.
(ii) How far will The Chunter travel in 2 hours 15 minutes ?
(iii) Calculate the velocity of The Chunter relative to The Rapid.
(iv) Use your part (iii) answer to calculate, in hours and minutes, how long it will take until the two motor boats are 8 km apart.

Question 5

A particle P has velocity ($3 \boldsymbol{i}+2 \boldsymbol{j}$) ms^{-1} when $t=0$ seconds and velocity $(7 \boldsymbol{i}+4 \boldsymbol{j}) \mathrm{ms}^{-1}$ at time $t=2$ seconds
Find the acceleration of P assuming that it is constant.

Question 6

The position of a particle at time t is given by;

$$
\boldsymbol{r}=(3 t-7) \boldsymbol{i}+(6 t+1) \boldsymbol{j}
$$

(i) If d is the distance in metres of \boldsymbol{r} from the origin at time t, find an expression for d that involves the square root of a quadratic equation in t.
(HINT : Pythagoras)
(ii) Show, by completing the square on the quadratic, that;

$$
\frac{1}{5} d^{2}=9\left(t-\frac{1}{3}\right)^{2}+9
$$

(iii) What value of t makes $\frac{1}{5} d^{2}$ as small as possible ?
This is the time at which the particle is closest to the origin.
(iv) What is this minimum distance?

Question 7

At 11:00 hour the position vector of an aircraft relative to an airport O is;

$$
\boldsymbol{r}_{\boldsymbol{A}}=(200 \boldsymbol{i}+30 \boldsymbol{j}) \mathrm{km}
$$

Note that \boldsymbol{i} and \boldsymbol{j} are unit vectors due east and due north respectively.
The constant velocity of the aircraft is;

$$
\boldsymbol{V}_{\boldsymbol{A}}=(180 \boldsymbol{i}-120 \boldsymbol{j}) \mathrm{kmh}^{-1}
$$

Find;
(i) the time when the aircraft is due east of the airport O
(ii) how far it then is from O
(iii) how far it is from O at 12:00

