$$
\sqrt{S O U \cdot R \cdot D \cdot S}
$$

\&

$$
I^{i} \cdot \mathbb{N}^{n} \cdot D^{d} \cdot I^{i} \cdot C^{c} \cdot E^{e} \cdot s^{s}
$$

Surds and Indices

Lesson 1

A-Level Pure Mathematics: Year 1
GCSE (Grades 8 and 9)
Algebra of Surds and Indices I

1.1 Square Roots without a calculator

Example \#1

Without using a calculator, find $\sqrt{2704}$

Example \#2

The following number is too big for my calculator;

$$
11^{102} \times 13^{284}
$$

Even so, square root this number, writing the answer in index form

1.2 Two Quick Questions

(i) Without using a calculator, making your method clear, determine,

$$
\sqrt{3969}
$$

(ii) The following number is too big for my calculator;
$17^{38} \times 19^{74}$
Even so, square root this number, writing the answer in index form

1.3 Square Free

Any number which is not prime can be written as a unique product of primes. For example,

$$
120=2^{3} \times 3 \times 5
$$

Mathematicians talk of the decomposition of 120 into a product of primes.
There is another decomposition of 120 that is useful. It revolves around identifying the biggest square number that will divide into 120 exactly.

Reminder: Square Numbers $=\{1,4,9,16,25,36, \ldots .$.

As 4 is the biggest square number that divides into 120 we can write,

$$
120=4 \times 30
$$

Notice that no square number, other than 1 , will divide into 30 .
Thus 30 is termed square-free or, more succinctly,Free.

In summary, our new decomposition takes an integer that is not \squareFree and expresses it as a square number multiplied by a square free number. i.e.

$$
\text { Not } \square \text { Free }=\square \times \square \text { Free }
$$

Example : Without using a calculator, write $\sqrt{120}$ in the form $a \sqrt{p}$ where a and p are integers and $\quad p$ is \square FREE.

1.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 26

Question 1

Without using a calculator, write each of the following in the form $a \sqrt{p}$ where $\quad a$ and p are integers and $\quad p$ is \square FREE.
(i) $\sqrt{8}$
(ii) $\sqrt{3^{3}}$
(iii) $\sqrt{48}$
(iv) $\sqrt{98}$
(v) $\sqrt{2^{3} \times 7}$
(vi) $\sqrt{2 \times 11^{2}}$
(vii) $\sqrt{2^{8} \times 5}$

Question 2

Which of the following areFREE?
(i) 5
(ii) 5^{2}
(iii) 5^{3}
(iv) $\quad 5^{4}$
(v) 2×3
(vi) $\quad 2^{3} \times 3$

Question 3

The following number is too big for my calculator;

$$
5^{52} \times 7 \times 13^{95}
$$

Even so, square root this number, writing the answer in in the form $a \sqrt{p}$ where $\quad a$ and p are integers, that may be written in index form and $\quad p$ is \square FREE.

Question 4

Without using a calculator, write each of the following in the form $a \sqrt{p}$ where $\quad a$ and p are integers and $\quad p$ is \square FREE.
(i) $\sqrt{504}$
(ii) $\sqrt{1452}$

Question 5

Without using a calculator, determine the cube root of 1728
i.e. $\sqrt[3]{1728}$

