

Surds and Indices

Lesson 1

A-Level Pure Mathematics : Year 1 GCSE (Grades 8 and 9) Algebra of Surds and Indices I

1.1 Square Roots without a calculator

Example #1 Without using a calculator, find $\sqrt{2704}$

[3 marks]

Example #2

The following number is too big for my calculator;

$$11^{102} \times 13^{284}$$

Even so, square root this number, writing the answer in index form

[2 marks]

1.2 Two Quick Questions

(i) Without using a calculator, making your method clear, determine,

 $\sqrt{3969}$

[3 marks]

(ii) The following number is too big for my calculator;

$17^{38} \times 19^{74}$

Even so, square root this number, writing the answer in index form

[2 marks]

1.3 Square Free

Any number which is not prime can be written as a unique product of primes. For example,

$$120 = 2^3 \times 3 \times 5$$

Mathematicians talk of the *decomposition* of 120 into a product of primes.

There is another decomposition of 120 that is useful. It revolves around identifying the biggest square number that will divide into 120 exactly.

Reminder: Square Numbers = { 1, 4, 9, 16, 25, 36, }

As 4 is the biggest square number that divides into 120 we can write,

 $120 = 4 \times 30$

Notice that no square number, other than 1, will divide into 30. Thus 30 is termed square-free or, more succinctly, \Box Free.

In summary, our new decomposition takes an integer that is not \Box Free and expresses it as a square number multiplied by a square free number. i.e.

Not
$$\Box$$
 Free = $\Box \times \Box$ Free

Example : Without using a calculator, write $\sqrt{120}$ in the form $a\sqrt{p}$ where a and p are integers and p is \Box FREE.

[2 marks]

1.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 26

Question 1

Without using a calculator, write each of the following in the form $a\sqrt{p}$ where a and p are integers

and p is \Box FREE.

(i)
$$\sqrt{8}$$
 (ii) $\sqrt{3^3}$

(iii)
$$\sqrt{48}$$
 (iv) $\sqrt{98}$

$$(\mathbf{v}) \quad \sqrt{2^3 \times 7} \qquad (\mathbf{vi}) \quad \sqrt{2 \times 11^2}$$

(vii)
$$\sqrt{2^8 \times 5}$$

[7 marks]

Question 2

Which of the following are \Box FREE ?

(i) 5 (ii) 5^2 (iii) 5^3 (iv) 5^4 (v) 2×3 (vi) $2^3 \times 3$

[2 marks]

Question 3

The following number is too big for my calculator;

$$5^{52} \times 7 \times 13^{95}$$

Even so, square root this number, writing the answer in in the form $a\sqrt{p}$

where a and p are integers, that may be written in index form and p is \Box FREE.

[3 marks]

Question 4

Without using a calculator, write each of the following in the form $a\sqrt{p}$

	where and	a and p are integers p is \Box FREE.			
(i)	$\sqrt{504}$		(ii)	$\sqrt{1452}$	

(iii)
$$\sqrt{2 \times 3^3 \times 5^3}$$
 (iv) $\sqrt{2 \times 3^5 \times 11}$

[2, 3, 2, 3 marks]

Question 5

Without using a calculator, determine the cube root of 1728

i.e. $\sqrt[3]{1728}$

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk