A-Level Pure Mathematics: Year 1
 GCSE (Grades 8 and 9)

Algebra of Surds and Indices I

2.1 SURD Manipulation

There are benefits in 'using your wits' to try and spot 'short cuts' and 'clever moves' to avoid long-winded and pedantic solutions.

However, if you need to put in lots of steps to be certain of getting a question right, put them in - it's often quicker to scribble down a few extra lines rather than agonise over a tricky step in your mind.

Also keep in mind that there are often a couple of different methods that could be employed - use what you are comfortable with, which may differ from what your neighbour is doing.

Example

Without using a calculator, calculate $2 \sqrt{15} \times 4 \sqrt{10}$
Write your answer in the form $a \sqrt{b}$
where $\quad a$ and b are integers and $\quad b$ is as small as possible.

2.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 70

Do NOT use a calculator

Question 1

Calculate each of the following, writing your answers in the form $a \sqrt{b}$
where $\quad a$ and b are integers
and $\quad b$ is as small as possible.
(i) $3 \sqrt{6} \times 7 \sqrt{21}$
(ii) $5 \sqrt{14} \times 2 \sqrt{10}$
(iii) $10 \sqrt{22} \times 4 \sqrt{6}$
(iv) $3 \sqrt{10} \times 4 \sqrt{55}$

Question 2

Simplify:
(i) $\sqrt{12}$
(ii) $\sqrt{20}$
(iii) $\sqrt{8}$
(iv) $\sqrt{3^{2} \times 5}$
(v) $\sqrt{2^{4} \times 3}$
(vi) $\sqrt{242}$
(vii) $\sqrt{75}$
(viii) $\sqrt{6 \times 27}$
(ix) $\sqrt{147}$
(x) $\sqrt{5^{3}}$
($\mathbf{x i}) \sqrt{567}$
(xii) $\sqrt{8 \times 14}$
[12 marks]

Question 3

Simplify:
(i) $5 \sqrt{18}$
(ii) $2 \sqrt{30 \times 10}$
(iii) $5 \sqrt{54}$
(iv) $3 \sqrt{2^{3} \times 10}$
(v) $2 \sqrt{2^{2} \times 5 \times 35}$
(vi) $2 \sqrt{245}$

Question 4

Simplify:
(i) $\frac{\sqrt{44}}{2}$
(ii) $\frac{\sqrt{24}}{2}$
(iii) $\frac{\sqrt{200}}{5}$
(iv) $\frac{\sqrt{243}}{3}$
(v) $\frac{\sqrt{288}}{4}$
(vi) $\frac{\sqrt{450}}{3}$

Question 5
Simplify:
(i) $\frac{\sqrt{98}}{\sqrt{2}}$
(ii) $\frac{\sqrt{500}}{\sqrt{5}}$
(iii) $\frac{\sqrt{63}}{\sqrt{7}}$

Question 6
Simplify:
(i) $\frac{\sqrt{10}}{\sqrt{5}}$
(ii) $\frac{\sqrt{22}}{\sqrt{11}}$
(iii) $\frac{\sqrt{56}}{\sqrt{7}}$

Question 7

Simplify:
(i) $3 \sqrt{75}+2 \sqrt{12}$
(ii) $2 \sqrt{18}+\sqrt{2^{3} \times 5^{2}}-\sqrt{72}$
(iii) $5 \sqrt{20}+3 \sqrt{45}-4 \sqrt{80}$
(iv) $6 \sqrt{6}-\sqrt{24}+3 \sqrt{2 \times 3 \times 7^{2}}$

Question 8

Simplify:
(i) $5 \sqrt{63}$
(ii) $7 \sqrt{200}$
(iii) $10 \sqrt{216}$
(iv) $2 \sqrt{90}$
(v) $\quad 11 \sqrt{3 \times 5^{3}}$
(vi) $\quad 12 \sqrt{2^{5} \times 3^{2}}$
[6 marks]

Question 9

Write each of the following in the form $a+b \sqrt{c}$ for integer a, b and c. Furthermore, c is to be square free.
[Your answers to Question 8 will be helpful...]
(i) $\frac{18+5 \sqrt{63}}{3}$
(ii) $\frac{14+7 \sqrt{200}}{14}$
(iii) $\frac{45+10 \sqrt{216}}{15}$
(iv) $\frac{12+2 \sqrt{90}}{3}$
(v) $\frac{30-11 \sqrt{375}}{5}$
(vi) $\frac{36+12 \sqrt{288}}{9}$

Question 10

Write in the form $a+b \sqrt{c}$ where a, b and c are integers.
Furthermore, c, is to be \square Free.
(i) $\frac{200+3 \sqrt{1000}}{5}$
(ii) $\frac{-64+16 \sqrt{88}}{32}$
(iii) $\frac{2+3 \sqrt{156}}{2}$

[6 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

