Lesson 10

A-Level Pure Mathematics : Year 2 Differentiation III

10.1 Differentiating $x=f(y)$

The graph is of the curve with equation $x=e^{y} \cos y$ with y in radians.

Video : http://www.NumberWonder.co.uk/v9028/10a.mp4
(i) Obtain an expression for $\frac{d y}{d x}$ in terms of y
(ii) What is the equation of the normal to the curve when $y=0$?
(iii) Add your part (ii) normal onto the graph above

10.2 Differentiating $\arcsin x$

The graph of $y=\arcsin x$
It is the inverse of a one-to-one piece of the $\sin x$ function

$$
y=\arcsin x \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

Proof

Teaching Video : http://www.NumberWonder.co.uk/v9028/10b.mp4

Watch the video and then write out the proof here

129

10.3 Exercise

Marks Available : 40

Question 1

The graph is of the curve with equation $y=\frac{\sin \left(x^{2}\right)}{x}$ with x in radians.

(i) Obtain an expression for $\frac{d y}{d x}$ in terms of x
(ii) What is the exact equation of the tangent to the curve when $x=\sqrt{\pi}$
(iii) Add your part (ii) tangent onto the graph above

Question 2

The graph of $y=\arccos x$
It is the inverse of a one-to-one piece of the $\cos x$ function

$$
y=\arccos x \Rightarrow \frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
$$

Assuming standard results for $\sin x$ and $\cos x$ prove the above result.

Question 3

The graph is of a piece of the curve with equation $y=x^{2} \sin x$

(i) Obtain an expression for $\frac{d y}{d x}$ in terms of x
(ii) What is the exact equation of the normal to the curve when $x=\pi$
(iii) Add your part (ii) normal onto the graph above

Question 4

The graph of $y=\arctan x$
It is the inverse of a one-to-one piece of the $\tan x$ function

$$
y=\arctan x \Rightarrow \frac{d y}{d x}=\frac{1}{1+x^{2}}
$$

(i) Show that if $y=\tan x$ then $\frac{d y}{d x}=\sec ^{2} x$ by using the derivatives of $\sin x$ and $\cos x$ and the quotient rule.
(ii) Hence prove that if $y=\arctan x$ then $\frac{d y}{d x}=\frac{1}{1+x^{2}}$

Question 5

A curve has equation, $y=\cos ^{2} x+\sin x \quad 0<x<2 \pi$
Find the coordinates of its stationary points.

