Lesson 10

A-Level Pure Mathematics : Year 2 Differentiation III

10.1 Differentiating x = f(y)

The graph is of the curve with equation $x = e^y \cos y$ with y in radians.

Video : <u>http://www.NumberWonder.co.uk/v9028/10a.mp4</u>

(i) Obtain an expression for
$$\frac{dy}{dx}$$
 in terms of y

(ii) What is the equation of the normal to the curve when y = 0?

(iii) Add your part (ii) normal onto the graph above

[2, 2, 2 marks]

10.2 Differentiating *arcsin x*

It is the inverse of a one-to-one piece of the sin x function

$$y = \arcsin x \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

Proof

Teaching Video : <u>http://www.NumberWonder.co.uk/v9028/10b.mp4</u>

Watch the video and then write out the proof here

(F

[6 marks]

10.3 Exercise

Marks Available : 40

Question 1

[3 marks]

(ii) What is the *exact* equation of the tangent to the curve when $x = \sqrt{\pi}$

[5 marks]

(iii) Add your part (ii) tangent onto the graph above

[1 mark]

Question 2

$$y = \arccos x \implies \frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}}$$

Assuming standard results for sin x and cos x prove the above result.

[7 marks]

Question 3

[3 marks]

(ii) What is the *exact* equation of the normal to the curve when $x = \pi$

[6 marks]

(iii) Add your part (ii) normal onto the graph above

[1 mark]

It is the inverse of a one-to-one piece of the $\tan x$ function

$y = \arctan x \Rightarrow$	dy _	1
	$\frac{dx}{dx} =$	$1 + x^2$

(i) Show that if y = tan x then $\frac{dy}{dx} = sec^2 x$ by using the derivatives of sin x and cos x and the quotient rule.

[2 marks]

(ii) Hence prove that if
$$y = \arctan x$$
 then $\frac{dy}{dx} = \frac{1}{1 + x^2}$

Question 5

A curve has equation, $y = cos^2 x + sin x$ $0 < x < 2\pi$ Find the coordinates of its stationary points.

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk