Lesson 11

11.1 Revision

$$
\text { Marks Available : } 40
$$

Table of Standard Derivatives

$f(x)$	$f^{\prime}(x)$	In Formula Book ?
x^{n}	$n x^{n-1}$	No
e^{x}	e^{x}	No
$\ln x$	$\frac{1}{x}$	No
$\sin x$	$\cos x$	No
$\cos x$	$-\sin x$	No
$\tan x$	$\sec ^{2} x$	Yes
$\csc x$	$-\csc x \cot x$	Yes
$\sec x$	$\sec x \tan x$	Yes
$\cot x$	$-\csc x$	Yes
$\arcsin x$	$\frac{1}{\sqrt{1-x^{2}}}$	Yes
$\arccos x$	$-\frac{1}{\sqrt{1-x^{2}}}$	Yes
$\arctan x$	$\frac{1}{1+x^{2}}$	Yes

Question 1
Differentiate each of the following with respect to x,
(i) $y=7 x^{4}$
(ii) $y=11 \sqrt{x}$

Question 2
By first expanding the brackets, differentiate each of the following with respect to x,
(i) $\quad y=(x+6)(2 x-5)$
(ii) $y=\sqrt{x}\left(\frac{1}{\sqrt{x}}+3 \sqrt{x}\right)$

Question 3

Use The Chain Rule to differentiate each of the following with respect to x,
(i) $y=4\left(x^{3}+3\right)^{5}$
(ii) $y=4 \cos (2 x)$
(iii) $y=\sec ^{3} x$
(iv) $y=e^{\sin x}+e^{\cos x}$
[8 marks]

Question 4

(i) Use The Product Rule to find $\frac{d y}{d x}$ if $y=x \ln x$
(ii) Find also $\frac{d^{2} y}{d x^{2}}$

Question 5

Consider the function

$$
f(x)=\tan (3 x)
$$

Determine the value of

$$
f^{\prime}\left(\frac{\pi}{18}\right)
$$

Question 6

Use The Quotient Rule to show that if $y=\frac{x^{3}-1}{x^{3}+1}$

$$
\text { then } \frac{d y}{d x}=\frac{6 x^{2}}{\left(x^{3}+1\right)^{2}}
$$

Question 7

Find the equation of the tangent to the curve $y=\frac{11}{x^{2}-3}$ when $x=5$
Give the answer in the form $a x+b y+c=0$ where a, b and c are integers to be found.

Question 8

The function $f(x)$ is given below

$$
f(x)=\frac{x^{2} \sin (2 x)}{9 \pi}
$$

(i) Find $f^{\prime}(x)$
(ii) Show that $f^{\prime}\left(\frac{\pi}{4}\right)=\frac{1}{18}$

Question 9

If

$$
\frac{d}{d x}(\ln \sqrt{a x+b})=\frac{4}{a x+1}
$$

Find the values of a and b.

