13.1 Later Date Revision

Marks Available : 40
Table of Standard Derivatives

$f(x)$	$f^{\prime}(x)$	In Formula Book ?
x^{n}	$n x^{n-1}$	No
e^{x}	e^{x}	No
$\ln x$	$\frac{1}{x}$	No
$\sin x$	$\cos x$	No
$\cos x$	$-\sin x$	No
$\tan x$	$\sec ^{2} x$	Yes
$\csc x$	$-\csc x \cot x$	Yes
$\sec x$	$\sec x \tan x$	Yes
$\cot x$	$-\csc x$	Yes
$\arcsin x$	$\frac{1}{\sqrt{1-x^{2}}}$	Yes
$\arccos x$	$-\frac{1}{\sqrt{1-x^{2}}}$	Yes
$\arctan x$	$\frac{1}{1+x^{2}}$	Yes

Question 1

Show that the derivative with respect to x of

$$
y=\sec x \tan x
$$

is

$$
\frac{d y}{d x}=\sec x\left(2 \sec ^{2} x-1\right)
$$

Question 2

Show that the derivative with respect to x of;

$$
y=\csc x \cot x
$$

is

$$
\frac{d y}{d x}=\csc x\left(1-2 \csc ^{2} x\right)
$$

Question 3

Consider the function;

$$
f(x)=\frac{8}{(1-3 x)^{3}}
$$

Show that;

$$
f^{\prime}(1)=\frac{9}{2}
$$

Question 4

A-Level Examination Question from January 2009, Paper C3 (Edexcel) Find the equation of the tangent to the curve

$$
x=\cos (2 y+\pi) \text { at } \quad\left(0, \frac{\pi}{4}\right)
$$

Give your answer in the form $y=a x+b$, where a and b are constants to be found.

Question 5

The curve

$$
y=\ln \left(x^{2}-3\right)
$$

crosses the x-axis at A and B.
(i) Find the coordinates of A and B
(ii) The normals at A and B meet at P. Find the coordinates of P.

Question 6

Show that the derivative of the inverse cotangent function

$$
y=\operatorname{arccot} x
$$

is

$$
\frac{d y}{d x}=-\frac{1}{1+x^{2}}
$$

The following trigonometry identity will be useful;

$$
\cot ^{2} y+1=\csc ^{2} y
$$

Question 7

The curve

$$
y=\frac{2 x+1}{2 x-1}
$$

crosses the x-axis at A and the y-axis at B.

Find the point of intersection of the tangents to the curve at A and B.

