2.1 The Product Rule

Given two functions, $u(x)$ and $v(x)$ that are multiplying each other, The Product Rule gives a method of obtaining the derivative of their product. It states that,

$$
(u(x) v(x))^{\prime}=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)
$$

All of the x in brackets are considered to be unnecessary clutter and so the rule is more usually written in the following succinct and elegant form,

The Product Rule

$$
\text { If } f=u v \text { then } f^{\prime}=u v^{\prime}+u^{\prime} v
$$

2.2 Example

Differentiate the product of x^{5} with x^{3} by immediately applying The Product Rule.

Teaching Video : http://www.NumberWonder.co.uk/v9028/2.mp4

Watch the video and then write out the solution here

19

2.3 Exercise

Marks Available : 34

Question 1

(i) Show how to use The Product Rule to differentiate,

$$
y=x^{9} \times x^{11}
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=x^{9} \times x^{11}
$$

Question 2

(i) Show how to use The Product Rule to differentiate,

$$
y=3 x^{5} \times 4 x^{7}
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=3 x^{5} \times 4 x^{7}
$$

Question 3

(i) Show how to use The Product Rule to differentiate,

$$
y=x \times x
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=x \times x
$$

Question 4

(i) Show how to use The Product Rule to differentiate,

$$
y=8 x^{\frac{3}{2}} \times 6 x^{\frac{5}{2}}
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=8 x^{\frac{3}{2}} \times 6 x^{\frac{5}{2}}
$$

Question 5

(i) Show how to use The Product Rule to differentiate,

$$
y=x^{-3} \times x^{8}
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=x^{-3} \times x^{8}
$$

Question 6

(i) Show how to use The Product Rule to differentiate,

$$
y=\left(x^{2}-1\right)\left(x^{2}+1\right)
$$

(ii) Use algebra to simplify first, then differentiate,

$$
y=\left(x^{2}-1\right)\left(x^{2}+1\right)
$$

Question 7

Use the product rule to show that;

$$
y=x^{4}\left(3 x^{2}+1\right)
$$

has a first derivative given by,

$$
\frac{d y}{d x}=2 x^{3}\left(9 x^{2}+2\right)
$$

and a second derivative given by,

$$
\frac{d^{2} y}{d x^{2}}=6 x^{2}\left(15 x^{2}+2\right)
$$

before determining the third derivative.

