A-Level Pure Mathematics : Year 2

Differentiation III

3.1 Product In, Product Out (PIPO)

When using The Product Rule, the object before differentiation is a product. It's considered elegant to have an object after the differentiation that's also a product. Furthermore, in tackling optimisation problems in which local minima and maxima are sought, (which correspond to where the derivative, the gradient, is zero) having a product equalling zero (rather than a sum) is a desirable situation.
In short, initially applying The Product Rule is often only half of a question;
manipulating the algebra to derive an answer in the form of a product is the other.

3.2 Example

Show that the derivative of $y=x^{3}(2 x+5)^{3}$ can be expressed as,

$$
\frac{d y}{d x}=3 x^{2}(2 x+5)^{2}(4 x+5)
$$

Teaching Video : http://www.NumberWonder.co.uk/v9028/3.mp4

Watch the video and then write out the solution here

10

3.3 One For You To Do

Often, in the middle of using The Product Rule, The Chain Rule is required.

The Chain Rule for $y=[f(x)]^{n}$

$$
\text { If } y=[f(x)]^{n} \text { then } \frac{d y}{d x}=n[f(x)]^{n-1} f^{\prime}(x)
$$

The Product Rule

$$
\text { If } f=u v \text { then } f^{\prime}=u v^{\prime}+u^{\prime} v
$$

Try this problem, then check your solution with mine on the following page.
Try 1 Use the product rule to show that the derivative of,

$$
y=(2 x+3)^{2}(5 x-1)^{3}
$$

is,

$$
\frac{d y}{d x}=(2 x+3)(5 x-1)^{2}(50 x+41)
$$

Answer to Try 1

$$
\begin{aligned}
y & =(2 x+3)^{2}(5 x-1)^{3} \\
\frac{d y}{d x} & =(2 x+3)^{2} \times 3(5 x-1)^{2} \times 5+2(2 x+3)^{1} \times 2 \times(5 x-1)^{3} \\
\frac{d y}{d x} & =(2 x+3)(5 x-1)^{2}\{15(2 x+3)+4(5 x-1)\} \\
\frac{d y}{d x} & =(2 x+3)(5 x-1)^{2}\{30 x+45+20 x-4\} \\
\frac{d y}{d x} & =(2 x+3)(5 x-1)^{2}\{50 x+41\}
\end{aligned}
$$

3.3 Exercise

$$
\text { Marks Available : } 35
$$

Question 1

Use the product rule to show that the derivative of,

$$
y=x^{5}(x-1)^{2}
$$

is,

$$
\frac{d y}{d x}=x^{4}(x-1)(7 x-5)
$$

Question 2

Use the product rule to show that the derivative of,

$$
y=x^{7}(6 x+5)^{3}
$$

is,

$$
\frac{d y}{d x}=5 x^{6}(6 x+5)^{2}(12 x+7)
$$

Question 3

Use the product rule to show that the derivative of,

$$
y=\left(x^{2}-3\right)(x+1)^{2}
$$

is,

$$
\frac{d y}{d x}=2\left(x^{2}-1\right)(2 x+3)
$$

Question 4

Use the product rule to show that the derivative of,

$$
y=(4 x+1)^{\frac{3}{2}}\left(x^{2}+5\right)
$$

is,

$$
\frac{d y}{d x}=2 \sqrt{4 x+1}\left(7 x^{2}+x+15\right)
$$

Question 5

Use the product rule to show that the derivative of,

$$
y=(2 x-3)^{3}\left(x^{2}+1\right)
$$

is,

$$
\frac{d y}{d x}=2(2 x-3)^{2}\left(x^{2}+1\right)\left(7 x^{2}-6 x+3\right)
$$

Question 6

Use the product rule to find the derivative of,

$$
y=x^{3}(5 x+1)^{2}
$$

Write your answer as a product.
[5 marks]

Question 7

Find the x component of the coordinates of the stationary points on the curve

$$
y=\left(x^{2}-1\right) \sqrt{1+x}
$$

