5.1 The Quotient Rule

Given two functions, $u(x)$ and $v(x)$, the first divided by the second, The Quotient Rule gives a method of obtaining the derivative of the division. It states that,

$$
\left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{v(x) u^{\prime}(x)-v^{\prime}(x) u(x)}{(v(x))^{2}}
$$

All of the x in brackets are considered to be unnecessary clutter and so the rule is more usually written in the following succinct and elegant form,

The Quotient Rule

$$
\text { If } f=\frac{u}{v} \text { then } f^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}}
$$

5.2 Example

Differentiate $y=\frac{x+4}{x+5}$ by immediately applying The Quotient Rule Teaching Video : http://www.NumberWonder.co.uk/v9028/5.mp4

Watch the video and then write out the solution here

109

5.3 Exercise

Marks Available : 40

Question 1

Given that $y=\frac{4 x}{x+3}$
use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{12}{(x+3)^{2}}$

Question 2

Given that $y=\frac{x^{2}}{(x+5)}$ use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{x(x+10)}{(x+5)^{2}}$

Question 3

Given that $y=\frac{5 x-2}{3 x+1}$ use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{11}{(3 x+1)^{2}}$

Question 4

Given that $y=\frac{x^{2}+1}{x^{2}+4}$ use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{6 x}{\left(x^{2}+4\right)^{2}}$

Question 5

Given that $y=\frac{x^{5}}{(2 x+1)^{3}}$ use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{x^{4}(4 x+5)}{(2 x+1)^{4}}$

Question 6

Given that $y=\frac{x^{7}}{(3 x+2)^{5}}$ use The Quotient Rule to show that the derivative is given by $\frac{d y}{d x}=\frac{2 x^{6}(3 x+7)}{(3 x+2)^{6}}$

Question 7

Given that $y=\frac{2(x+3)^{3}}{\sqrt{x}}$ use The Quotient Rule to show that $\frac{d y}{d x}=\frac{(x+3)^{2}(5 x-3)}{x^{\frac{3}{2}}}$

Question 8

Given that $y=x^{2} \sqrt{x+5}$
use The Product Rule to show that $\frac{d y}{d x}=\frac{5 x(x+4)}{2 \sqrt{x+5}}$

Question 9

$$
f(x)=\frac{2 x}{x+5}+\frac{6 x}{x^{2}+7 x+10} \quad x>0
$$

(a) Show that

$$
f(x)=\frac{2 x}{x+2}
$$

(b) Hence find $f^{\prime}(3)$

Question 10

Given that the function $f(x)=\frac{x}{x^{2}+2}$ is increasing on the interval $[-k, k]$ find the largest possible value of k.

