COORDINATE GEOMETRY

Lines • Circles • Curves • Tangents • Normals

COORDINATE GEOMETRY The Straight Line

Lesson 1

A-Level Pure Mathematics, Year 1 Additional Mathematics GCSE
 Coordinate Geometry

1.1 Gradient of Straight Lines

Most straight lines can be written in the form, $y=m x+c$
where m is the gradient of the line
and $\quad c$ is the y axis intercept
The exception is vertical lines, such as, for example $x=3$.

The gradient between two points $A\left(x_{a}, y_{a}\right)$ and $B\left(x_{b}, y_{b}\right)$ is given by,

$$
m=\frac{y_{b}-y_{a}}{x_{b}-x_{a}}
$$

This is often written, $m=\frac{\Delta Y}{\Delta X}$, which some remember as, $m=\frac{r i s e}{r u n}$

By eye, graphs are always read from left to right.
A line with height that is increasing, left to right, has a positive gradient.
By making $\Delta X=1$ the gradient becomes what you go up by, for every 1 moved across.

$$
y=x \quad m<-1 \quad m=-1
$$

1.2 "Together" Exercise

Question 1

(i) On the graph below plot the lines with equations;

$$
y=3 x+1 \quad y=\frac{1}{2} x-4 \quad y=-2 x+11
$$

Clearly show which equation goes with which line
(ii) Shade in the triangle formed and mark on the triangle's right angle.

[5 marks]
Teaching Video : $\underline{\text { http://www.NumberWonder.co.uk/v9033/1a.mp4 }}$

Question 2

Without plotting a graph, find the equation of the line with gradient 2 through (5,1)
Write your answer in the form $y=m x+c$

Question 3

Without plotting a graph, find the equation of the line between the points $A(2,11)$ and $B(5,20)$.

Teaching Video : $\underline{h t t p: / / w w w . N u m b e r W o n d e r . c o . u k / v 9033 / 1 b . m p 4 ~}$

1.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available :50

Question 1

(i) On the graph below plot the lines with equations;

$$
y=3 x-2 \quad y=\frac{1}{2} x+3 \quad y=-2 x-7
$$

Clearly show which equation goes with which line.
(ii) Shade in the triangle formed and mark on the triangle's right angle.

Question 2

Without drawing a graph, find the equation of the line with gradient 3 through (2,13)
Write your answer in the form $y=m x+c$

Question 3

Without drawing a graph find the equation of the line between the points $A(2,5)$ and $B(5,17)$

Question 4

On each of the following graphs,
(a) Carefully draw a line that passes exactly through the two points at the centre of the octagons
(b) Write down the equation of the line, where possible, in the form $y=m x+c$

(i)

(iii)
(ii)

[2, 2 marks]

[2, 2 marks]
(v)

[2, 2 marks]
(vii)

(viii)

[2, 2 marks]
(ix)

(x)

[2, 2 marks]

Question 5

A question on the "throw a box around" method to find the area of a triangle.

On the graph below the x-axis runs from -10 to +10 and the y-axis does the same. Three straight lines are plotted.
(i) Next to each line, at a suitable place, write that line's equations.
(ii) Calculate the area of triangle A
[1 mark]
(iii) Calculate the area of triangle B
[1 mark]
(iv) Calculate the area of triangle C
[1 mark]
Hence, or otherwise, determine the area of the triangle enclosed by the three lines

Question 6

Find the distance between the points $A(2,11)$ and $B(5,20)$.
Give your answer in the form $p \sqrt{10}$ where p is an integer to be found.
HINT : The Theorem of Pythagoras

[3 marks]

Question 7

Without drawing a graph, find the equation of the line with gradient 0.5 that passes through the point (12,2), writing your answer in the form $y=m x+c$

Question 8

Without drawing a graph, find the equation of the line between the points $A(3,5)$ and $B(7,-11)$. Show your working.

