Lesson 11

A-Level Pure Mathematics, Year 1

Additional Mathematics
Coordinate Geometry

11.1 Normal from Curve

Previously, the curve with equation $y=\frac{x^{3}}{9}-x$ was studied and the tangent to it at the point $(3,0)$ found to be $y=2 x-6$

There is a second line of interest, called the "normal" that is a right angles to the tangent at any specified point. At the point (3,0) the normal to the curve
$y=\frac{x^{3}}{9}-x$ turns out to be $y=-\frac{1}{2} x+\frac{3}{2}$.
Notice that the gradient of the tangent, m_{t}, and the gradient of the normal, m_{n} have the property of any pair of mutually perpendicular lines; $m_{t} \times m_{n}=-1$ In other words, each is the sign changed reciprocal of the other.

11.2 Why the Normal is of Interest

Imagine the graph to be a road map and the curve a road on that map. A car moves along the road with constant speed. The tangent represents the direction a car moving along the road has at any moment. The normal represents the direction along which the force felt by a person in the car acts as it moves around each bend. Like the tangent the normal gives only a direction. It does not give the magnitude of the force; that depends on how sharply the road is bending and, indeed, on a straight piece of road the force along the normal has magnitude zero. The force along the normal is often referred to as centripetal force.

11.3 Example

The equation of a curve is $y=\sqrt{x}$
(i) Find the equation of the normal to this curve at the point where $x=4$
(ii) To the graph below add the part (i) normal.

Teaching Video : http://www.NumberWonder.co.uk/v9033/11.mp4

11.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available :52

Question 1

The equation of a curve is $y=x^{2}-4 x$
(i) Find the equation of the normal to this curve at the point where $x=4$
(ii) To the graph below add the part (i) normal

Question 2

Additional Mathematics Examination Question from June 2009, Q2 (OCR)
Find the equation of the normal to the curve

$$
y=x^{3}+5 x-7
$$

at the point $(1,-1)$
[5 marks]

Question 3

Additional Mathematics Examination Question from June 2019, Paper 1, Q3 (OCR)
Find the equation of the normal to the curve

$$
y=x^{3}-2 x^{2}+2 x+4
$$

at the point $(2,8)$

Question 4

Additional Mathematics Examination Question from June 2018, Q7 (OCR)
(i) Find the coordinates of the points where the line $y=7 x-9$ cuts the curve $y=x^{2}+2 x-5$
(ii) Determine whether the line is a normal to the curve at either of the points of intersection

Question 5

Additional Mathematics Examination Question from June 2014, Q10 (OCR)
(i) Find the coordinates of the point P on the curve $y=2 x^{2}+x-5$ where the gradient of the curve is 5
[3 marks]
(ii) Find the equation of the normal to the curve at the point P

Question 6

Additional Mathematics Examination Question from June 2005, Q10 (OCR)

The curve shown has equation;

$$
y=\frac{2}{3} x^{2}-2 x+10
$$

(i) Find the equation of the tangent to the curve at $A(3,10)$
(ii) Show that the equation of the normal to the curve at $B(0,10)$ is

$$
2 y-x=20
$$

[3 marks]
(iii) Find the coordinates of the point C where these two lines intersect
(iv) Calculate the length $B C$

Question 7

A-Level Examination Question from May 2014, IAL, Paper C1(R), Q11 (Edexcel)

The sketch is of part of the curve C with equation $y=20-4 x-\frac{18}{x}, x>0$
Point A lies on C and has an x coordinate equal to 2
(a) Show that the equation of the normal to C at A is $y=-2 x+7$

The normal to C at A meets C again at the point B
(b) Use algebra to find the coordinates of B

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2022 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

