#### Lesson 11

### A-Level Pure Mathematics, Year 1 Additional Mathematics Coordinate Geometry

#### 11.1 Normal from Curve

Previously, the curve with equation  $y = \frac{x^3}{9} - x$  was studied and the tangent to it at the point (3, 0) found to be y = 2x - 6yy = 2x - 6yy = 2x - 6y $y = -\frac{1}{2}x + \frac{3}{2}$ 

There is a second line of interest, called the "normal" that is a right angles to the tangent at any specified point. At the point (3, 0) the normal to the curve

$$y = \frac{x^3}{9} - x$$
 turns out to be  $y = -\frac{1}{2}x + \frac{3}{2}$ .

Notice that the gradient of the tangent,  $m_t$ , and the gradient of the normal,  $m_n$  have the property of any pair of mutually perpendicular lines;  $m_t \times m_n = -1$ In other words, each is the sign changed reciprocal of the other.

### 11.2 Why the Normal is of Interest

Imagine the graph to be a road map and the curve a road on that map. A car moves along the road with constant speed. The tangent represents the direction a car moving along the road has at any moment. The normal represents the direction along which the force felt by a person in the car acts as it moves around each bend. Like the tangent the normal gives only a direction. It does not give the magnitude of the force; that depends on how sharply the road is bending and, indeed, on a straight piece of road the force along the normal has magnitude zero. The force along the normal is often referred to as centripetal force.

## 11.3 Example

The equation of a curve is  $y = \sqrt{x}$ 

- (i) Find the equation of the normal to this curve at the point where x = 4
- (ii) To the graph below add the part (i) normal.



Teaching Video : <u>http://www.NumberWonder.co.uk/v9033/11.mp4</u>



### 11.4 Exercise

## Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 52

# Question 1

The equation of a curve is  $y = x^2 - 4x$ 

- (i) Find the equation of the normal to this curve at the point where x = 4
- (ii) To the graph below add the part (i) normal



Additional Mathematics Examination Question from June 2009, Q2 (OCR) Find the equation of the normal to the curve

$$y = x^3 + 5x - 7$$

at the point (1, -1)

[ 5 marks ]

### **Question 3**

Additional Mathematics Examination Question from June 2019, Paper 1, Q3 (OCR) Find the equation of the normal to the curve

$$y = x^3 - 2x^2 + 2x + 4$$

at the point (2,8)

Additional Mathematics Examination Question from June 2018, Q7 (OCR)

(i) Find the coordinates of the points where the line y = 7x - 9 cuts the curve  $y = x^2 + 2x - 5$ 

[ 4 marks ]

(ii) Determine whether the line is a normal to the curve at either of the points of intersection

[ 3 marks ]

Additional Mathematics Examination Question from June 2014, Q10 (OCR)

(i) Find the coordinates of the point *P* on the curve  $y = 2x^2 + x - 5$ where the gradient of the curve is 5

[ 3 marks ]

(ii) Find the equation of the normal to the curve at the point P

[ 3 marks ]

# **Question 6** Additional Mathematics Examination Question from June 2005, Q10 (OCR)



The curve shown has equation;

$$y = \frac{2}{3}x^2 - 2x + 10$$

(i) Find the equation of the tangent to the curve at A(3, 10)

[4 marks]

(ii) Show that the equation of the normal to the curve at B(0, 10) is

2y - x = 20

[ 3 marks ]

(iii) Find the coordinates of the point C where these two lines intersect

[ 3 marks ]

(iv) Calculate the length BC

[ 2 marks ]

A-Level Examination Question from May 2014, IAL, Paper C1(R), Q11 (Edexcel)



The sketch is of part of the curve *C* with equation  $y = 20 - 4x - \frac{18}{x}$ , x > 0Point *A* lies on *C* and has an *x* coordinate equal to 2

(a) Show that the equation of the normal to C at A is y = -2x + 7

The normal to C at A meets C again at the point B

(**b**) Use algebra to find the coordinates of *B* 

[ 5 marks ]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk