Lesson 2

A-Level Pure Mathematics, Year 1
 Additional Mathematics
 GCSE
 Coordinate Geometry

2.1 Line Segments

A line segment is simply a piece of straight line between two endpoints.
The length of a line segment is found by using the theorem of Pythagoras.
The coordinates of the midpoint of a line segments are found by taking the average (the mean) of the x parts of the two endpoints, to give the x part of the midpoint, and, separately, taking the average (the mean) of the y parts of the two endpoints to give the y part of the midpoint.

These comments are formalised in the following theorem;

The Length and Midpoint of a Line Segment

A line segment with endpoints $A\left(x_{A}, y_{A}\right)$ and $B\left(x_{B}, y_{B}\right)$ has a length given by;

$$
|A B|=\sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}
$$

where $\Delta X=x_{B}-x_{A}$ and $\Delta Y=y_{B}-y_{A}$
Furthermore,

$$
\text { Midpoint } A B=\left(\frac{x_{B}+x_{A}}{2}, \frac{y_{B}+y_{A}}{2}\right)
$$

The ΔX and ΔY are the same as that used to calculate gradient, $m=\frac{\Delta Y}{\Delta X}$
In three dimensions with endpoints $A\left(x_{A}, y_{A}, z_{A}\right)$ and $B\left(x_{B}, y_{B}, z_{B}\right)$ the theorem is only marginally more complicated;

$$
|A B|=\sqrt{(\Delta X)^{2}+(\Delta Y)^{2}+(\Delta Z)^{2}}
$$

where $\Delta X=x_{B}-x_{A}, \quad \Delta Y=y_{B}-y_{A}$ and $\Delta Z=z_{B}-z_{A}$

$$
\text { Midpoint } A B=\left(\frac{x_{B}+x_{A}}{2}, \frac{y_{B}+y_{A}}{2}, \frac{z_{B}+z_{A}}{2}\right)
$$

2.2 Example

The graph of this function is a line segment.

$$
f(x)=\frac{1}{2} x+1, \quad x \in \mathbb{R}, 2 \leqslant x \leqslant 10
$$

Sketch the line segment on the grid below, and determine its length and midpoint using the theorem, "The Length and Midpoint of a Line Segment"

Teaching Video : http://www.NumberWonder.co.uk/v9033/2.mp4

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available :55

Question 1

The graph of this function is a line segment.

$$
g(x)=-\frac{1}{3} x+8, \quad x \in \mathbb{R}, 3 \leqslant x \leqslant 15
$$

(i) Sketch the line segment on the grid below

(ii) Use the theorem "The Length and Midpoint of a Line Segment" to calculate the exact length of the line segment.
(iii) Use the theorem "The Length and Midpoint of a Line Segment" to determine midpoint of the line segment.
[2 marks]

Question 2

Without drawing a graph, and showing your working, determine the exact distance between the two points $A(-15,-2)$ and $B(9,5)$

Question 3

The graph of this function is a line segment.

$$
h(x)=\frac{2}{3} x+1, \quad x \in \mathbb{R}, \quad-3 \leqslant x \leqslant 9
$$

(i) Sketch the line segment on the grid below

(ii) Use the theorem "The Length and Midpoint of a Line Segment" to calculate the exact length of the line segment.
(iii) Use the theorem "The Length and Midpoint of a Line Segment" to determine midpoint of the line segment.

Question 4

A straight line has equation $4 y-12 x+3=0$
Write this equation in the form $y=m x+c$

Question 5

IGCSE Examination Question from January 2020, Paper 1H, Q1 (Edexcel)
The point A has coordinates $(5,-4)$
The point B has coordinates (13,1)
(a) Work out the coordinates of the midpoint of $A B$

Line L has equation $y=2-3 x$
(b) Write down the gradient of line L
(c) Does the point with coordinates (100, - 302) lie on L ? You must give a reason for your answer
[1 mark]

Question 6

IGCSE Examination Question from January 2018, Paper 3H, Q10 (Edexcel)
The straight line L is parallel to the line with equation $2 y+8 x=5$
L passes through the point with coordinates (2,3)
Find an equation for L

Question 7

Additional Mathematics Examination Question from June 2017, Q4 (OCR, FSMQ)
The coordinates of A and B are $(1,5)$ and $(-3,7)$ respectively
(i) Calculate the exact length of $A B$
(ii) Find the coordinates of the midpoint of $A B$

Question 8

Additional Mathematics Examination Question from June 2009, Q3 (OCR, FSMQ) A is the point $(1,5)$ and C is the point $(3, p)$
(i) Find the equation of the line through A which is parallel to $2 x+5 y=7$
(ii) This line also passes through the point C.
Find the value of p

Question 9

IGCSE Examination Question from June 2017, Paper 4H, Q13 (Edexcel)
Here are the equations of four straight lines,
Line A $\quad y=2 x+3$
Line B $\quad 2 y=6-3 x$
Line C $4 x-2 y=3$
Line D $\quad y=3-2 x$
Two of these lines are parallel.
(a) Which two lines?

Line \mathbf{L} has a gradient of $-\frac{5}{2}$ and passes through the point with coordinates (1,3)
(b) Find an equation of \mathbf{L}

Give your answer in the form $a x+b y=c$ where a, b and c are integers

Question 10

A-Level Examination Question from January 2008, C1, Q4.
The point $A(-6,4)$ and the point $B(8,-3)$ lie on the line L.
(a) Find an equation for L in the form $a x+b y+c=0$, where a, b and c are integers.
(b) Find the distance $A B$, giving your answer in the form $k \sqrt{5}$, where k is an integer.

Question 11

A-Level Examination Question from May 2010, C1, Q8
(a) Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers
(b) Find the length of $A B$, leaving your answer in surd form

The point C has coordinates $(2, t)$, where $t>0$, and $A C=A B$
(c) Find the value of t
[1 mark]
(d) Find the area of triangle $A B C$
[2 marks]

