Lesson 4

4.1 Lines at Right Angles

The Perpendicular Lines Theorem (Version 1)

If the gradient of the line l_{1} is m_{1} and the gradient of the line l_{2} is m_{2} then the lines l_{1} and l_{2} are perpendicular if and only if

$$
m_{1} \times m_{2}=-1
$$

Proof

Consider two points, A and B on the line l_{1} which has gradient m_{1}

Clearly, $\quad m_{1}=\frac{\Delta Y}{\Delta X}$
Now, consider a rotation of -90° about the point A which gives a line l_{2} with gradient m_{2} which is perpendicular to l_{1}.

Clearly, $\quad m_{2}=-\frac{\Delta X}{\Delta Y}$

$$
\text { Observe that, } \quad \begin{aligned}
m_{1} \times m_{2} & =\frac{\Delta Y}{\Delta X} \times-\frac{\Delta X}{\Delta Y} \\
& =-1
\end{aligned}
$$

In many questions, the gradient of a first line will be known and the gradient of a second, perpendicular to the first, sought.
In consequense the following version of the theorem is often of more use;

The Perpendicular Lines Theorem (Version 2)

Given a line l_{1} with gradient m_{1} then the gradient m_{2} of any perpendicular line l_{2} is the sign changed reciprocal of m_{1}.

$$
\text { That is, } m_{2}=-\frac{1}{m_{1}}
$$

4.2 Example

Find the equation of the perpendicular bisector of the line segment $A B$ where A is $(2,-5)$ and B is $(4,1)$
(i) Give your answer in the form $y=m x+c$
(ii) Illustrate your answer with a sketch graph.

Teaching Video :http://www.NumberWonder.co.uk/v9033/4.mp4

4.3 Exercise

> Any solution based entirely on graphical
> or numerical methods is not acceptable
> Marks Available : 50

Question 1

A line, L, has equation

$$
y=\frac{2}{3} x+\frac{1}{3}
$$

(i) What is the gradient of L ?
(ii) What would be the gradient of a line, perpendicular to L ?

Question 2

A line has equation $2 x+5 y-4=0$
(i) Write this line's equation in the form $y=m x+c$
(ii) Hence state the gradient of the line $2 x+5 y-4=0$
[1 mark]
(iii) What is the gradient of a line, perpendicular to $2 x+5 y-4=0$?

Question 3

A line has equation $5 x-3 y-2=0$
(i) What is the gradient of this line?
(ii) What is the gradient of a line perpendicular to $5 x-3 y-2=0$?

Question 4

Additional Mathematics Examination Question from June 2015, Q1, (OCR, FSMQ)
Find the equation of the line which is perpendicular to the line $2 x+3 y=5$ and which passes through the point $(3,4)$

Question 5

A-Level Examination question from May 2011, C1, Q3 (Edexcel) The points P and Q have coordinates $(-1,6)$ and $(9,0)$ respectively. The line l is perpendicular to $P Q$ and passes through the mid-point of $P Q$. Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 6

A-Level Examination Question from January 2010, C1, Q3 (Edexcel)
The line l_{1} has equation $3 x+5 y-2=0$
(a) Find the gradient of l_{1}

The line l_{2} is perpendicular to l_{1} and passes through the point $(3,1)$
(b) Find the equation of l_{2} in the form $y=m x+c$, where m and c are constants

Question 7

A-Level Examination Question from January 2006, C1, Q3 (Edexcel)
The line L has equation $y=5-2 x$
(a) Show that the point $P(3,-1)$ lies on L
(b) Find an equation of the line perpendicular to L, which passes through P. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Question 8

Additional Mathematics Examination Question from June 2014, Q8 (OCR)
Four points have coordinates $A(-5,-1), B(0,4), C(7,3)$ and $D(2,-2)$
(i) Using gradients of lines, prove that $A B C D$ is a parallelogram
(ii) Using lengths of lines, prove that $A B C D$ is a rhombus
(iii) Prove that $A B C D$ is not a square

Question 9

A-Level Examination Question from January 2011, C1, Q9 (Edexcel)
The line L_{1} has equation $2 y-3 x-k=0$, where k is a constant.
Given that the point $A(1,4)$ lies on L_{1} find,
(a) the value of k,
(b) the gradient of L_{1}
[2 marks]
The line L_{2} passes through A and is perpendicular to L_{1}
(c) Find an equation of L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{2} crosses the x-axis at the point B
(d) Find the coordinates of B
(e) Find the exact length of $A B$

Question 10

A-Level Examination Question from May 2007, C1, Q11 (Edexcel)
The line l_{1} has equation $y=3 x+2$,
and the line l_{2} has equation $3 x+2 y-8=0$
(a) Find the gradient of the line l_{2}

The point of intersection of l_{1} and l_{2} is P
(b) Find the coordinates of P

The lines l_{1} and l_{2} cross the line $y=1$ at the points A and B respectively.
(c) Find the area of triangle $A B P$

