Lesson 9

A-Level Pure Mathematics, Year 1 Additional Mathematics Coordinate Geometry

9.1 Tangents

A tangent to a circle is a straight line that touches the circle at a single point. If a radius of the circle is drawn to the point touched by the tangent, then that radius makes a right angle with the tangent.

In other words, the radius and the tangent are mutually perpendicular.

If the tangent has gradient m_t and the perpendicular radius has gradient m_r then *each is the sign changed reciprocal of the other*.

That is,

$$m_t \times m_r = -1$$

Keeping this relationship between m_t and m_r is mind is often the key to answering a question about a circle that involves a tangent.

9.2 Example #1

In the above diagram, suppose that the equation of the radius is,

$$y = \frac{3}{2}x - \frac{1}{2}$$

and that the point where radius and tangent meet is (6, 5). What is the equation of the tangent ?

Teaching Video : <u>http://www.NumberWonder.co.uk/v9033/9a.mp4</u>

[2 marks]

9.3 Example #2

A circle C, with centre Q(a, b) and radius 5, touches the x-axis at (4, 0).

(**i**) Write down the value of *a* and the value of *b*.

(**ii**) Find a Cartesian equation of *C*.

A tangent to the circle, drawn from the point P(8, 17), touches the circle at T. (iii) Find, to 3 significant figures, the length of PT.

Teaching Video : <u>http://www.NumberWonder.co.uk/v9033/9b.mp4</u>

9.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 86

Question 1

A circle has equation,

 $(x - 1)^{2} + (y + 2)^{2} = 13$

(i) State the coordinates of the centre of the circle.

[1 mark]

(**ii**) Show that the point (3, 1) is on this circle.

[2 marks]

(iii) What is the gradient of the radius of the circle to the point (3, 1)?

[2 marks]

A tangent to the circle touches the point (3, 1)

(iv) Find the equation of this tangent in the form y = mx + c

A circle has equation,

$$(x + 5)^{2} + (y - 1)^{2} = 65$$

The point (3, 2) is on this circle

Find the equation of the tangent to the circle at the point (3, 2)

[5 marks]

Question 3

A circle has equation,

$$x^2 + y^2 - 6x + 4y = 7$$

The point (1, 2) is on this circle.

Find the equation of the tangent to the circle at the point (1, 2)

[6 marks]

A circle C, with centre Q(a, b) and radius 8, touches the y-axis at (0, 3)

(**i**) Write down the value of *a* and the value of *b*

[2 marks]

(ii) Find a Cartesian equation of C

[2 marks]

A tangent to the circle, drawn from the point P(19, 13), touches the circle at T (iii) Find, to 3 significant figures, the length of PT

(i)

A circle has equation,

$$(x - 2)^{2} + (y + 1)^{2} = 16$$

Show that the point (8, 5) is NOT on the circle.

[2 marks]

(ii) Find the length of a tangent from the point (8, 5) to the circle.

[5 marks]

A-Level Examination Question from January 2013, Paper C2, Q5 (Edexcel) The circle C has equation

$$x^2 + y^2 - 20x - 24y + 195 = 0$$

The centre of C is at the point M

- (a) Find
 - (**i**) the coordinates of the point M
 - (ii) the radius of the circle C

[5 marks]

N is the point with coordinates (25, 32) (**b**) Find the length of the line *MN*

[2 marks]

The tangent to C at a point P on the circle passes through point N(**c**) Find the length of the line NP

[2 marks]

A-Level Examination Question from January 2018, Paper C12, Q11 (Edexcel) The circle C has equation

$$x^2 + y^2 - 8x - 10y + 16 = 0$$

The centre of C is at the point T

- (**a**) Find,
 - (**i**) the coordinates of the point T

[2 marks]

(ii) the radius of the circle C

[1 mark]

The point *M* has coordinates (20, 12)

(**b**) Find the exact length of the line *MT*

[2 marks]

Point *P* lies on the circle *C* such that the tangent at *P* passes through the point *M* (\mathbf{c}) Find the exact area of triangle *MTP*, giving your answer as a simplified surd.

[3 marks]

Additional Mathematics Examination Question from June 2016, Q12 (OCR)

The line L_1 has equation 3x - y = 1 and the point *P* has coordinates (8, 3)

(i) Find the equation of the line L_2 which passes through P and is perpendicular to line L_1

[3 marks]

(ii) Find the coordinates of the point Q where L_1 and L_2 intersect

[3 marks]

(**iii**) Find length PQ

[2 marks]

(iv) Write down the equation of the circle that has centre P and line L_1 as a tangent

[1 mark]

(**v**) Find the equation of the other line that is a tangent to the circle and is parallel to line L_1

[3 marks]

Additional Mathematics Examination Question from June 2004, Q12 (OCR) The shape shown in the diagram is part of a circle. The centre of the circle is F(8, 4) and AD and BC are tangents at A and B respectively. A is the point (3, 4) and B is the point (11, 8)

A wire is stretched from D to A, round the circumference to the circle to B and then to C, where D and C are on the *x*-axis. Units are centimetres.

(**a**) Find the equation of the circle.

[3 marks]

(**b**) (**i**) Find the gradient of *FB* and hence the equation of the tangent *BC*.

[4 marks]

(ii) Given that the length of the wire from *A* to *B* in contact with the circle is 11.07 cm, correct to 2 decimal places, find the total length of the wire.

[5 marks]

Additional Mathematics Examination Question from, June 2018, Q11 (OCR) A circle has centre (0, 3) and radius 3

(i) Show that the equation of the circle is $x^2 + y^2 - ky = 0$ where *k* is to be determined.

[2 marks]

The line y = mx - 2 passes through the point P(0, -2) and is a tangent to the circle

(**ii**) Find the two possible values of m

[6 marks]

The two tangents from P meet the circle at the points A and B respectively. (iii) Find the lengths PA and PB

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk