Lesson 9

A-Level Pure Mathematics, Year 1
 Additional Mathematics

Coordinate Geometry

9.1 Tangents

A tangent to a circle is a straight line that touches the circle at a single point. If a radius of the circle is drawn to the point touched by the tangent, then that radius makes a right angle with the tangent.
In other words, the radius and the tangent are mutually perpendicular.

If the tangent has gradient m_{t} and the perpendicular radius has gradient m_{r} then each is the sign changed reciprocal of the other.

That is,

$$
m_{t} \times m_{r}=-1
$$

Keeping this relationship between m_{t} and m_{r} is mind is often the key to answering a question about a circle that involves a tangent.

9.2 Example \#1

In the above diagram, suppose that the equation of the radius is,

$$
y=\frac{3}{2} x-\frac{1}{2}
$$

and that the point where radius and tangent meet is $(6,5)$.
What is the equation of the tangent?
Teaching Video : http://www.NumberWonder.co.uk/v9033/9a.mp4

9.3 Example \#2

A circle C, with centre $Q(a, b)$ and radius 5 , touches the x-axis at $(4,0)$.
(i) Write down the value of a and the value of b.
(ii) Find a Cartesian equation of C.

A tangent to the circle, drawn from the point $P(8,17)$, touches the circle at T.
(iii) Find, to 3 significant figures, the length of $P T$.

Teaching Video : $\underline{\text { http://www.NumberWonder.co.uk/v9033/9b.mp4 }}$

9.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 86

Question 1

A circle has equation,

$$
(x-1)^{2}+(y+2)^{2}=13
$$

(i) State the coordinates of the centre of the circle.
(ii) Show that the point (3,1) is on this circle.
(iii) What is the gradient of the radius of the circle to the point (3,1)?

A tangent to the circle touches the point (3,1)
(iv) Find the equation of this tangent in the form $y=m x+c$

Question 2

A circle has equation,

$$
(x+5)^{2}+(y-1)^{2}=65
$$

The point (3,2) is on this circle
Find the equation of the tangent to the circle at the point (3,2)

Question 3

A circle has equation,

$$
x^{2}+y^{2}-6 x+4 y=7
$$

The point (1,2) is on this circle.
Find the equation of the tangent to the circle at the point (1,2)

Question 4

A circle C, with centre $Q(a, b)$ and radius 8 , touches the y-axis at $(0,3)$
(i) Write down the value of a and the value of b
[2 marks]
(ii) Find a Cartesian equation of C

A tangent to the circle, drawn from the point $P(19,13)$, touches the circle at T (iii) Find, to 3 significant figures, the length of $P T$

Question 5

A circle has equation,

$$
(x-2)^{2}+(y+1)^{2}=16
$$

(i) Show that the point $(8,5)$ is NOT on the circle.
(ii) Find the length of a tangent from the point (8,5) to the circle.

Question 6

A-Level Examination Question from January 2013, Paper C2, Q5 (Edexcel) The circle C has equation

$$
x^{2}+y^{2}-20 x-24 y+195=0
$$

The centre of C is at the point M
(a) Find
(i) the coordinates of the point M
(ii) the radius of the circle C
N is the point with coordinates $(25,32)$
(b) Find the length of the line $M N$

The tangent to C at a point P on the circle passes through point N
(c) Find the length of the line $N P$

Question 7

A-Level Examination Question from January 2018, Paper C12, Q11 (Edexcel)
The circle C has equation

$$
x^{2}+y^{2}-8 x-10 y+16=0
$$

The centre of C is at the point T
(a) Find,
(i) the coordinates of the point T
(ii) the radius of the circle C

The point M has coordinates (20, 12)
(b) Find the exact length of the line $M T$

Point P lies on the circle C such that the tangent at P passes through the point M
(c) Find the exact area of triangle $M T P$, giving your answer as a simplified surd.

Question 8

Additional Mathematics Examination Question from June 2016, Q12 (OCR)
The line L_{1} has equation $3 x-y=1$ and the point P has coordinates $(8,3)$
(i) Find the equation of the line L_{2} which passes through P and is perpendicular to line L_{1}
(ii) Find the coordinates of the point Q where L_{1} and L_{2} intersect
(iii) Find length $P Q$
[2 marks]
(iv) Write down the equation of the circle that has centre P and line L_{1} as a tangent
[1 mark]
(v) Find the equation of the other line that is a tangent to the circle and is parallel to line L_{1}

Question 9

Additional Mathematics Examination Question from June 2004, Q12 (OCR) The shape shown in the diagram is part of a circle. The centre of the circle is $F(8,4)$ and $A D$ and $B C$ are tangents at A and B respectively. A is the point $(3,4)$ and B is the point $(11,8)$

A wire is stretched from D to A, round the circumference to the circle to B and then to C, where D and C are on the x-axis. Units are centimetres.

(a) Find the equation of the circle.
(b) (i) Find the gradient of $F B$ and hence the equation of the tangent $B C$.
(ii) Given that the length of the wire from A to B in contact with the circle is 11.07 cm , correct to 2 decimal places, find the total length of the wire.

Question 10

Additional Mathematics Examination Question from, June 2018, Q11 (OCR)
A circle has centre (0,3) and radius 3
(i) Show that the equation of the circle is $x^{2}+y^{2}-k y=0$ where k is to be determined.

The line $y=m x-2$ passes through the point $P(0,-2)$ and is a tangent to the circle
(ii) Find the two possible values of m

The two tangents from P meet the circle at the points A and B respectively.
(iii) Find the lengths $P A$ and $P B$

