GCSE Mathematics Angles & Polygons

You may use a calculator Marks Available : 60

11.1 Revision

[1 mark]

[1 mark]

Find angle *E* (v) 60° 105° E 95°

[1 mark]

The diagram shows an equilateral triangle surrounded by three squares.

Write down the size of the following angles;

Question 3

An isosceles triangle is shown.

Write down the size of the following angles;

- (i) *K* [1 mark]
- (ii) L [1 mark]
- (iii) *M* [1 mark]

[1 mark]

(a) What is the size of angle; (i) A (ii) B

[1, 1 mark]

(**b**) As many copies of this triangle as needed are used to form a polygon.

How many sides will the polygon formed have ?

[1 mark]

Question 6

How many squares are contained within this figure ?

[3 marks]

(i) Determine the value of *A*, and hence **list the three angles**.

 $\frac{2B}{7B}$

[2 marks]

(ii) Determine the value of *B*, and hence list the two angles.

[2 marks]

(iii) Determine the value of *C*, and hence **list the two angles**. 11C

[2 marks]

(iv) Determine the value of *D*, and hence **list the three angles**.

[2 marks]

 (\mathbf{v}) Determine the value of *E*, and hence **list the four angles**.

[2 marks]

(i) Determine the value of *A*, and hence **list the three angles**.

$$\begin{array}{r} A+15^{\circ} & 50^{\circ} \\ \hline & A+25^{\circ} \end{array}$$

[2 marks]

(ii) Determine the value of *B*, and hence list the two angles.

[2 marks]

(iii) Determine the value of *C*, and hence **list the two angles**. $C + 38^{\circ}$ $C + 22^{\circ}$

[2 marks]

(iv) Determine the value of *D*, and hence list the three angles.

[2 marks]

(v) Determine the value of *E*, and hence **list the four angles**.

[2 marks]

Recall that for a regular polygon,

one exterior angle =
$$\frac{360}{number of sides}$$

and that

For a decagon use these formulae to determine;

(a)	one exterior angle	F 1 1 1
(b)	one interior angle	[I mark]
		[1 mark]

(c) the sum of all ten interior angles

Question 10

For the regular octagon shown, determine;

(**i**) The exterior angle, *A*, by using a suitable formula.

[2 marks]

[1 mark]

(11)	An interior angle, <i>B</i> , by using a suitable formula.	[2 marks]
(iii)	С	
(•)		[1 mark]
(1V)	D	[1 mark]
(v)	E	
(E	[1 mark]
(1)	Γ	[1 mark]

(i) What is the angle between the hands of a clock at 3 pm?

[1 mark]

- (ii) Carefully draw the hands on the clock face when the time is 3.30 am.
- (iii) What is the angle between the hands of a clock at 3.30 am?

[2 marks]

- (iv) Carefully draw the hands on the clock face when the time is 3.15 am.
- (v) What is the angle between the hands of a clock at 3.15 am ?

[2 marks]

Here is a formula that works out the sum of the interior angles of a regular polygon;

Sum interior =
$$180(n-2)$$

where n is the number of sides of the polygon.

(i) When n = 12, what will be the sum of the interior angles ?

[1 mark]

(ii) If I have a regular polygon with internal angles that sum to 3600, how many sides does the polygon have ?

[1 mark]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk