Lesson 2

2.1 Irregular Polygons

- A polygon is a "many sided flat shape"
- It has interior (on the inside) angles and exterior (on the outside) angles.

Example

This Quadrilateral has interior angles of 67° , 160° , 50° and 83° Notice that 67 + 160 + 50 + 83 = 360

• For any polygon the sum of the interior angles depends upon how many sides it has, as shown in the following table;

Polygon's Name	Number of Sides	Interior Angle's Sum
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	540
Hexagon	6	720
Septagon	7	900
Octagon	8	1080
Nonogon	9	1260
Decagon	10	1440

• Here is a formula which some students like to learn that, given the number of sides in a convex polygon, works out the Interior Angle Sum;

Interior Angle Sum (Convex Polygon) IAS = 180 (n - 2)where IAS is the Interior Angle Sum and n is the number of sides

2.2 Exercise

You may use a calculator Marks Available : 35

Question 1

(i) What do the interior angles of a triangle add up to ?

[1 mark]

(ii) The following triangle is not drawn accurately; it's just a sketch. Use arithmetic to calculate the unknown angle marked x

[2 marks]

Question 2

(i) What do the interior angles of a quadrilateral add up to ?

[1 mark]

(ii) The following quadrilateral is not drawn accurately; it's just a sketch. Use arithmetic to calculate the unknown angle, marked y

[2 marks]

(i) What do the interior angles of a pentagon add up to ?

[1 mark]

(ii) The following pentagon is not drawn accurately; it's just a sketch. Use arithmetic to calculate the unknown angle, marked z

[3 marks]

Question 4

(i) What do the interior angles of a hexagon add up to ?

[1 mark]

(ii) The following hexagon is not drawn accurately; it's just a sketch. Use arithmetic to calculate the unknown angle, marked x

[3 marks]

(i) Find angle z in this isosceles triangle

[2 marks]

(ii) What does the following symbol on the triangle indicate ?

[1 mark]

Question 6

(i) What do the interior angles of a septagon add up to ?

[1 mark]

(ii) The following septagon is not drawn accurately; it's just a sketch. Use arithmetic to calculate the unknown angle, marked x

[3 marks]

Find angle *w* in this isosceles triangle

[2 marks]

Question 8 If a polygon the sum of the interior angles is 1440° How many sides has the polygon ?

[1 mark]

Question 9

Find angle *v* in this isosceles triangle

[2 marks]

Question 10

What will the interior angles of a polygon with 22 sides sum to ? Give a reason for your answer.

[2 marks]

Question 11

A polygon has interior angles that sum to 2160° How many sides has the polygon ? Give a reason for your answer.

[2 marks]

Find angle m in this isosceles triangle

[2 marks]

Question 13

A regular pentagon has five interior angles which are all the same size, and five sides which are all the same length.

Find angle *C*, the size of one interior angle, in a regular pentagon.

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk