Lesson 6

GCSE Mathematics Angles & Polygons

6.1 Discoveries

Here is the completed table that summarizes the previous lesson's investigations;

Question	N° of sides	Polygon Name	Each Interior	Each Exterior	Sum Interior	Sum Exterior
1	3	Equilateral Δ	60°	120°	180°	360°
2	4	Square	90°	90°	360°	360°
3	5	Pentagon	108°	72°	540°	360°
Example	8	Octagon	135°	45°	1080°	360°
4	10	Decagon	144°	36°	1440°	360°

The table suggests various properties that all regular polygons will have in common. The most efficient way to remember the various relationships is via the following formula triangle;

The three formulae contained within the triangle are;

Number Of Sides \times Exterior Angle = 360

Number Of Sides = $\frac{360}{Exterior Angle}$

$$Exterior Angle = \frac{360}{Number Of Sides}$$

Also

6.2 Exercise

You may use a calculator Marks Available : 50

Question 1

For a regular polygon;

number of sides = $\frac{360}{one \ exterior \ angle}$

Use this formula to answer the following question:

Each exterior angle of a regular polygon is 12° How many sides has the polygon?

[3 marks]

Question 2

For a regular polygon;

one exterior angle = $\frac{360}{number of sides}$

Use this formula to answer the following question:

What is the size of each exterior angle of a 15 sided regular polygon ?

[3 marks]

Question 3

(i) For a regular polygon what is the sum of one interior and one exterior angle?

[1 mark]

(ii)	Each e	Each exterior angle of a regular polygon is 18°.			
	(a)	How many sides has the polygon ?			
			[2 marks]		
	(b)	What is the size of each interior angle ?	[1 mark]		
	(c)	What is the sum of all the interior angles ?			
		······································	[1 mark]		

A regular polygon has 45 sides.

(i) What is the size of each exterior angle ?

[2 marks]

(**ii**) What is the size of each interior angle ?

[1 mark]

Question 5

A regular nonagon is shown with spokes radiating from the centre.

(i)	How many sides has a nonagon ?	
(ii)	What is the size of angle A ?	[1 mark]
(iii)	What is the size of angle B?	[1 mark]
(iv)	On the diagram clearly mark	[1 mark]
(1)	(a) an exterior angle	[1 morts]
	(b) an interior angle	[1 mark]
(v)	How many degrees is each of the nonagon's exterior angles ?	[1 mark]
		[1 mark]
(vi)	How many degrees is each of the nonagon's interior angles ?	[1 mark]

A regular dodecagon is shown with spokes radiating from the centre.

(i)	How many sides has a dodecagon ?	[1 mark]
(ii)	What is the size of angle A?	[1 mark]
(iii)	What is the size of angle B?	[1 mark]
(iv)	What is the size of angle C?	[1 mark]
Questio (i)	n 7 Explain why a regular polygon can NOT have an external angle of	
(ii)	Can a regular polygon have an external angle of 18°? Give a reason for your answer.	[2 marks]
		[2 marks]
(iii)	Which regular polygon has the largest possible external angle ?	[1 mark]
	What is the size of that external angle ?	[1 mark]

The five pointed star is a regular pentagram. In horror movies it's often used to keep werewolves away.

Some extra lines have been added to help you investigate the shape.

(i)	What is the size of angle <i>A</i> ?	[1 mark]
(ii)	What is the size of angle <i>B</i> ?	[1 mark]
(iii)	What is the size of angle <i>C</i> ?	[1 mark]
(iv)	What is the size of angle <i>D</i> ?	[1 mark]
(v)	What is the size of angle <i>E</i> ?	[1 mark]
(vi)	What is the size of angle <i>F</i> ?	[1 mark]
(vii)	What is the size of angle <i>G</i> ?	[1 mark]
(viii)	What is the sum of the interior angles of a regular pentagram ?	[1 mark]

William is doodling with regular polygons.

He sketches the diagram shown of two squares and a hexagon.

He wonders is another regular polygon will fit against those doodled so far.

(i)	What is the size of angle <i>A</i> ?	[1 mark]
(ii)	What is the size of angle <i>B</i> ?	[1 mark]
(iii)	What is the size of angle <i>C</i> ?	[1 mark]
(iv)	Does a regular polygon exist with interior angles of size C ? Explain your answer.	
		[2 marks]

(**v**) Williams friend, Tony, suggests putting another square in as shown below.

Is Tony's suggestion a good one ? Again, explain your answer.

[2 marks]

The six pointed star is a regular hexagram.

(i) In the space below use a pen or pencil, compass and straight edge to draw a large hexagram. If working on a computer upload a photograph of the hexagram drawn on paper with pencil, compass and straight edge.

[3 marks]

(ii) What is the sum of the interior angles of a regular hexagram ?

[1 mark]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk