Lesson 8

8.1 The Polygon Puzzles

To tackle questions on regular polygon the key facts you need to know are;

• This formulae triangle;

• This formula; One Interior Angle + One Exterior Angle = 180°

8.2 Example

Teaching Video: http://www.NumberWonder.co.uk/v9034/8.mp4

For a regular hexagon use the above "key facts" to determine;

(**i**) one exterior angle

[1 mark]

(**ii**) one interior angle

[1 mark]

(iii) the sum of all six interior angles

8.3 Exercise

You may use a calculator Marks Available : 50

Question 1

Recall that for a regular polygon,

and that

One Interior Angle +	One Exterior Angle	= 1	80
----------------------	--------------------	-----	----

For a pentagon use the above information to determine;

(**i**) one exterior angle

(ii)	one interior angle		

(iii) the sum of all five interior angles

[1 mark]

[1 mark]

[1 mark]

Question 2

(ii)

For an icosagon (20 sides) use the above information to determine; (i) one exterior angle

[1 mark]

[1 mark]

(iii) the sum of all twenty interior angles

one interior angle

[1 mark]

Without looking back at the previous page, fill in this Regular Polygon Formulae Triangle;

[2 marks]

Question 4

In your own words (and perhaps a diagram) explain why it is true that; One Interior Angle + One Exterior Angle = 180

[2 marks]

Question 5

For a hexadecagon (16 sides) determine;

(i) one exterior angle
[1 mark]
(ii) one interior angle
[1 mark]
(iii) the sum of all sixteen interior angles

A regular octagon has a square inside it, as shown.

Angle *D* is an exterior angle of the octagon.

(**i**) Calculate *D* by using the formula;

 $Exterior Angle = \frac{360}{Number Of Sides}$

- (ii) What is the size of angle B?
- (iii) By symmetry angles A and C are equal. What size are they each?

[2 marks]

Question 7

How many equilateral triangles are contained within this figure ?

[2 marks]

[1 mark]

[1 mark]

How many sides will the polygon formed have ?

[2 marks]

Question 9

How many squares are contained within this figure ?

[2 marks]

A regular hexagon has an equilateral triangle inside it, as shown.

Angle *D* is an exterior angle of the hexagon.

(i) Calculate *D* by using the formula;

 $Exterior Angle = \frac{360}{Number Of Sides}$

[1 mark]

(**ii**) What is the size of angle *B*?

[1 mark]

[2 marks]

(iii) By symmetry angles A and C are equal. What size are they each ?

Question 11

How many equilateral triangles are contained within this figure ?

[2 marks]

The diagram features a regular septagon.

(a) How many sides has a septagon ?

[1 mark]

(**b**) Use the formula;

$$Exterior Angle = \frac{360}{Number Of Sides}$$

to calculate the exterior angle of a septagon.

[1 mark]

 (c) Use the formula;
 One Interior Angle + One Exterior Angle = 180 to calculate the interior angle of a septagon.

[1 mark]

(**d**) State the size of the following angles;

(i) <i>A</i>	(v)	E
--------------	--------------	---

 $(\mathbf{ii}) \quad B \qquad \qquad (\mathbf{vi}) \quad F$

 $(\mathbf{iii}) \quad C \qquad \qquad (\mathbf{vii}) \quad G$

(iv) D (viii) H

[8 marks]

The diagram shows an octagram: an eight pointed star formed by extending the sides of a regular octagon outwards.

What is the sum of all the interior angles of an octagram ?

Explain your answer.

Complete the following table...

Number of sides	Name	Number of sides	Name
		11	Hendecagon
		12	
3	Triangle	13	Tridecagon
4	Quadrilateral	14	Tetradecagon
5	Pentagon	15	
6		16	
7		17	Heptadecagon
8		18	
9		19	
10		20	Icosagon

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk