An infinite series of puzzles and amusements so that you may become one of the E N L I G H T E N E D

$$\frac{A}{F} + \frac{\sqrt{L}}{R} \times \frac{G}{A^2} - \left(\frac{E}{C!} \div \frac{B}{T}\right) = \frac{R}{I} + \frac{A}{O^0} \times \sqrt{\left(\frac{I}{N}\right)} + \frac{C^{0.5}}{S}$$

$$\frac{A}{F} + \frac{\sqrt{L}}{R} \times \frac{G}{A^2} - \left(\frac{E}{C!} \div \frac{B}{T}\right) = \frac{R}{I} + \frac{A}{O^0} \times \sqrt{\left(\frac{I}{N}\right)} + \frac{C^{0.5}}{S}$$

GCSE Mathematics

ALGEBRAIC FRACTIONS

Lesson 1

GCSE Mathematics Algebraic Fractions

1.1 FOIL

Two methods of expanding brackets

METHOD 1 METHOD 2 (4x + 7)(3x - 5) (4x + 7)(3x - 5)

[2, 2 marks]

1.2 Factorisation

This is the reverse of expanding the brackets.

GCSE Examination Question from November 2010, 3H, Q13 (Edexcel)

(**a**) Factorise $x^2 - 8x + 15$

[2 marks]

(**b**) Factorise $x^2 - 49$

[1 mark]

1.3 An Algebraic Fraction

Simplify the following algebraic expressions by first factorising the quadratics:

$$\frac{x^2 + 5x - 66}{x^2 + 2x - 48}$$

[3 marks]

1.4 Proof of "A difference of two squares"

[3 marks]

1.5 Mental Arithmetic

Without using a calculator, what is $47^2 - 43^2$?

[2 marks]

1.6 Exercise

Marks Available : 55

Question 1

Expand the brackets and simplify;

(i)
$$(x-6)(x+3)$$
 (ii) $(x+4)(x-10)$

(iii)
$$(x+5)(x-4)$$
 (iv) $(x-8)(x+3)$

$$(\mathbf{v})$$
 $(x+11)(x-8)$ (\mathbf{vi}) $(x-4)(x+13)$

Expand the brackets and simplify;

(i)
$$(3x-7)(4x+3)$$
 (ii) $(4x+3)(5x-2)$

(iii)
$$(9x + 7)(x + 4)$$
 (iv) $(5x - 7)(3x - 4)$

$$(\mathbf{v}) \quad (13x+5)^2 \quad (\mathbf{vi}) \quad (11x-8)(9x-2)$$

[12 marks]

Simplify the following algebraic expressions by first factorising the quadratics:

(i)
$$\frac{x^2 + 6x + 8}{x^2 + 7x + 10}$$

[3 marks]

(ii)
$$\frac{x^2 + 3x - 18}{x^2 + 5x - 24}$$

[3 marks]

(iii)
$$\frac{x^2 + x - 90}{x^2 + 2x - 80}$$

[3 marks]

(iv)
$$\frac{x^2 + 4x - 21}{x^2 + 2x - 15}$$

[3 marks]

$$(\mathbf{v}) \quad \frac{x^2 + x - 20}{x - 4} + \frac{x^2 + 5x - 6}{x + 6}$$

[3 marks]

Simplify the following algebraic expressions by first factorising the quadratics:

(i)
$$\frac{x^2 + 8x - 9}{x - 1} + \frac{x^2 + x - 30}{x + 6}$$

[3 marks]

(ii)
$$\frac{x^2 + 3x - 28}{x^2 + 5x - 14}$$

[3 marks]

(iii)
$$\frac{x^2 + 10x - 24}{x^2 + 9x - 22}$$

[3 marks]

(iv)
$$\frac{x^2 + 7x - 44}{x - 4} + \frac{x^2 + 10x - 39}{x - 3}$$

[3 marks]

$$(\mathbf{v}) \qquad \frac{x^2 + 3x - 54}{x - 6} + \frac{x^2 + 4x - 5}{x - 1}$$

[3 marks]

GCSE Examination Question from November 2008, 4H, Q17 (Edexcel)

(a) Factorise $2x^2 + 5x + 3$

[2 marks]

(**b**) Factorise $4y^2 - 9$

[2 marks]

Question 6

GCSE Examination Question from June 2010, 3H, Q18 (Edexcel) Simplify fully

$$\frac{x^2 + 6x}{x^2 - 36}$$

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk