### 2.1 Common Denominator

To add or subtract two fractions, they must first be numerically adjusted to have a common denominator.

With this in mind;
Simplify the following expression;

$$
\frac{5(x+3)}{7}+\frac{2(x+1)}{3}
$$

## Note

The working is easier if care is taken to get the LCM of the denominators given. In the example, above, $\operatorname{LCM}\{3,7\}=21$ so both denominators where adjusted to be 21 . As 3 and 7 are co-prime (no factors in common) the LCM was just $3 \times 7$. BUT ... The given denominators will not always be co-prime !

State the values of
(i) $\operatorname{LCM}\{5,6\}$
( ii ) $\operatorname{LCM}\{3,9]$
(iii) $\operatorname{LCM}\{8,12\}$

### 2.2 Exercise

Marks Available : 35

## Question 1

Express as a single fraction
(i) $\frac{2(3 x+7)}{5}+\frac{3(2 x+1)}{2}$
(ii) $\frac{2(5 x+4)}{3}+\frac{3(3 x-2)}{4}$
(iii ) $\frac{4(x+1)}{7}+x$
Hint: $x=\frac{x}{1}$
(iv) $\quad \frac{8(2 x+1)}{3}+\frac{5(3 x+2)}{6}$

Hint: $\operatorname{LCM}\{3,6\}=6$
(v) $\frac{2(4 x+5)}{3}-\frac{5(2 x-3)}{4}$

Careful: double minus !
[ 3 marks ]
( vi ) $\frac{3}{4}-\frac{3-2 x}{6}$
Nasty !

## Question 2

GCSE Examination Question from June 2010, 4H, Q11 (Edexcel)
Simplify fully, $\quad \frac{x}{6}+\frac{3 x}{4}$

## Question 3

GCSE Examination Question from May 2008, 4H, Q23 ( a )
Simplify, $\frac{x^{2}-9}{x^{2}+3 x}$

## Question 4

GCSE Examination Question from November 2006, 4H, Q23
Simplify fully, $\frac{2 x^{2}-5 x-12}{4 x^{2}-9}$

## Question 5

GCSE Examination Question from May 2009, 3H, Q18
Simplify fully

$$
\frac{5 x^{2}+14 x-3}{50 x^{2}-2}
$$

## Question 6

GCSE Examination Question from November 2010, 4H, Q22 (Edexcel)
Simplify fully, $1+\frac{x^{2}+x-6}{(x+4)(x-2)}$

## [ 4 marks ]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2022 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

