Lesson 5

A-level Statistics : Year 1 Partitioning Data

5.1 Mean & Standard deviation from Grouped Frequency Tables

Example

The time taken for ten runners to complete a race are summarised in the table;

Time taken	Number of
(minutes)	runners
20 - 24	3
25 - 29	5
30 - 34	2

Find the mean and standard deviation of the times taken. Give your answers in minutes and seconds.

5.2 Exercise

Question 1

The time taken by 15 shoppers in a supermarket is presented in the table;

Time in Shop	Number of
(minutes)	shoppers
10 - 16	8
17 - 23	5
24 - 30	2

Find the mean and standard deviation of the shopping times. Give your answers in minutes and seconds.

In examination questions you are often told $\Sigma f x$ and $\Sigma f x^2$

This means that *you don't need to work them out*, with considerable less work then being needed to answer the question.

The next question is such a question...

Question 2

The times it took a random sample of swimmers to complete a sponsored swim are summarised in the table;

Time (minutes)	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69
Frequency	5	10	36	20	9

The mid-point of each class was represented by x and its corresponding frequency by f giving

$$\Sigma f x = 3740 \qquad \Sigma f x^2 = 183040$$

Determine the mean and the standard deviation of the swim times. Give your answers in minutes and seconds.

Question 3

The table below summarises data relating to the Average Rated Lifetime (ARL) of a random sample of 200 light bulbs taken from the production line of the Light Up You Life ForeverTM LED lightbulb company.

Lifetime, <i>x</i> (to nearest 100 hours)	Number of light-bulbs, <i>f</i>	
700 - 719	10	
720 - 729	14	
730 - 739	16	
740 - 749	21	
750 - 754	35	
755 - 759	41	
760 - 764	38	
765 - 769	15	
770 - 779	7	
780 - 799	3	

(i) By linear interpolation, estimate the median and quartiles of these lifetimes.Give your answers in 100 hours to 1 decimal place.

The formulae for the mean, μ , and the standard deviation, σ , are;

$$u = \frac{\Sigma f x}{\Sigma f}$$
 $\sigma = \sqrt{\frac{\Sigma f x^2}{\Sigma f} - \mu^2}$

(ii) Given that $\Sigma f x = 150\ 232.5$ and $\Sigma f x^2 = 112\ 899\ 573.8$

(**b**) determine the mean lifetime of a lightbulb.

(c) determine the standard deviation of the data.

(iii) One method of assessing the skewness of a distribution is to calculate $\frac{3 (mean - median)}{standard deviation}$ Evaluate this, to 1 decimal place, for the above distribution.

(iv) Use the quartiles to assess skewness and state whether or not you feel the result is compatible with your answer to part (iii).

Question 4

S1 examination question from January 2008, Q2

Cotinine is a chemical that is made by the body from nicotine which is found in cigarette smoke. A doctor tested the blood of 12 patients, who claimed to smoke a packet of cigarettes a day, for cotinine.

The results, in appropriate units, are shown below;

i ationt i		C	D	E	F	G	H	Ι	J	K	L
Cotinine level, $x = 10^{-10}$	0 390	169	175	125	420	171	250	210	258	186	243

[You may use $\Sigma x^2 = 724\ 961$]

(**a**) Find the mean and standard deviation of the level of cotinine in a patient's blood.

[4 marks]

(**b**) Find the median, upper and lower quartiles of these data

A doctor suspects that some of his patients have been smoking more than a packet of cigarettes per day. He decides to use $Q_3 + 1.5 (Q_3 - Q_1)$ to determine if any of the cotinine results are far enough away from the upper quartile to be outliers.

(c) Identify which patient(s) may have been smoking more than a packet of cigarettes a day. Show your working clearly.

[4 marks]

Research suggests that cotinine levels in the blood form a skewed distribution. One measure of skewness is found using

$$\frac{(Q_1 - 2Q_2 + Q_3)}{(Q_3 - Q_1)}$$

(d) Evaluate this measure and describe the skewness of these data.

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk