5.1 Mean \& Standard deviation from Grouped Frequency Tables

Example

The time taken for ten runners to complete a race are summarised in the table;

Time taken (minutes)	Number of runners
$20-24$	3
$25-29$	5
$30-34$	2

Find the mean and standard deviation of the times taken. Give your answers in minutes and seconds.

5.2 Exercise

Question 1

The time taken by 15 shoppers in a supermarket is presented in the table;

Time in Shop (minutes)	Number of shoppers
$10-16$	8
$17-23$	5
$24-30$	2

Find the mean and standard deviation of the shopping times.
Give your answers in minutes and seconds.

In examination questions you are often told $\Sigma f x$ and $\Sigma f x^{2}$
This means that you don't need to work them out, with considerable less work then being needed to answer the question.

The next question is such a question...

Question 2

The times it took a random sample of swimmers to complete a sponsored swim are summarised in the table;

Time (minutes)	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
Frequency	5	10	36	20	9

The mid-point of each class was represented by x and its corresponding frequency by f giving

$$
\Sigma f x=3740 \quad \Sigma f x^{2}=183040
$$

Determine the mean and the standard deviation of the swim times.
Give your answers in minutes and seconds.

Question 3

The table below summarises data relating to the Average Rated Lifetime (ARL) of a random sample of 200 light bulbs taken from the production line of the Light Up You Life Forever ${ }^{\text {TM }}$ LED lightbulb company.

Lifetime, x (to nearest 100 hours)	Number of light-bulbs, f	
$700-719$	10	
$720-729$	14	
$730-739$	16	
$740-749$	21	
$750-754$	35	
$755-759$	41	
$760-764$	38	
$765-769$	15	
$770-779$	7	
$780-799$	3	

(i) By linear interpolation, estimate the median and quartiles of these lifetimes. Give your answers in 100 hours to 1 decimal place.

The formulae for the mean, μ, and the standard deviation, σ, are;

$$
u=\frac{\Sigma f x}{\Sigma f} \quad \sigma=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\mu^{2}}
$$

(ii) Given that $\Sigma f x=150232.5$ and $\Sigma f x^{2}=112899573.8$
(b) determine the mean lifetime of a lightbulb.
(c) determine the standard deviation of the data.
(iii) One method of assessing the skewness of a distribution is to calculate

$$
\frac{3(\text { mean }- \text { median })}{\text { standard deviation }}
$$

Evaluate this, to 1 decimal place, for the above distribution.
(iv) Use the quartiles to assess skewness and state whether or not you feel the result is compatible with your answer to part (iii).

Question 4

S1 examination question from January 2008, Q2
Cotinine is a chemical that is made by the body from nicotine which is found in cigarette smoke. A doctor tested the blood of 12 patients, who claimed to smoke a packet of cigarettes a day, for cotinine.
The results, in appropriate units, are shown below;

Patient	A	B	C	D	E	F	G	H	I	J	K	L
Cotinine level, x	160	390	169	175	125	420	171	250	210	258	186	243

[You may use $\Sigma x^{2}=724961$]
(a) Find the mean and standard deviation of the level of cotinine in a patient's blood.
[4 marks]
(b) Find the median, upper and lower quartiles of these data

A doctor suspects that some of his patients have been smoking more than a packet of cigarettes per day. He decides to use $\mathrm{Q}_{3}+1.5\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$ to determine if any of the cotinine results are far enough away from the upper quartile to be outliers.
(c) Identify which patient(s) may have been smoking more than a packet of cigarettes a day. Show your working clearly.
[4 marks]

Research suggests that cotinine levels in the blood form a skewed distribution.
One measure of skewness is found using

$$
\frac{\left(\mathrm{Q}_{1}-2 \mathrm{Q}_{2}+\mathrm{Q}_{3}\right)}{\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)}
$$

(d) Evaluate this measure and describe the skewness of these data.

