#### Lesson 6

#### 6.1 Some Statistical Words

### **Qualitative Data**

: Data described in words

For example: Colour of eyes, favourite sport

#### **Quantitative Data**

: Data described in numbers

For example: Heights in cm of students

### **Discrete Data**

: Data which does not need rounding because it changes in steps For example: Rolls of dice

#### **Continuous Data**

: Data which can take any value within an interval and which has to be rounded For example: Weights of boys to the nearest 100 grams

#### 6.2 Exercise

#### Question 1

Consider the following words used to describe eight items of data;GiganticColossalVery LargeEnormousSuper-SizedMassiveHugeTitanicIs this data Qualitative or Quantitative ?

#### **Question 2**

I have a list of the prices for which 100 houses were sold last month. Is this data Discrete or Continuous ?

#### **Question 3**

I am interested in the the water consumption of 50 households in July. The water meters of the 50 households measure water consumption to the nearest litre.

(i) Am I dealing with Qualitative or Quantitative data ?

(ii) Is the data produced by the water meters Discrete or Continuous ?

The box and whisker diagram shows the Statistics examination results of the 200 students at St Trinian's School last year.



[ 2 marks ]

 (v) In a press release The Ministry of Education has announced;
"St Trinian's is to close as pupils have scored less than 30% in exams". Do you agree with the Ministry ? Give a reason for your answer.

*S1 Examination Question from January 2011 Q2* Keith records the amount of rainfall, in mm, at his school, each day for a week. The results are given below;

2.8 5.6 2.3 9.4 0.0 0.5 1.8

Jenny then records the amount of rainfall, x mm, at the school each day for the following 21 days. the results for the 21 days are summarised below;

 $\Sigma x = 84.6$ 

(**a**) Calculate the mean amount of rainfall during the whole 28 days.

[ 2 marks ]

Keith realises that he has transposed two of his figures. The number 9.4 should have been 4.9 and the number 0.5 should have been 5.0

Keith corrects these figures.

(**b**) State, giving your reason, the effect this will have on the mean.

|              |                                  | [ 2 marks ] |
|--------------|----------------------------------|-------------|
| Questio      | on 6                             |             |
| Give an      | example of data that is;         |             |
| (a)          | both DISCRETE and QUALITATIVE    |             |
| ( <b>b</b> ) | both CONTINUOUS and QUANTITATIVE | [2 marks]   |

[ 2 marks ]

*S1 Examination Question from January 2010 Q3* The birth weights, in kg, of 1500 babies are summarised in the table below.

| Weight<br>(kg) | Midpoint<br><i>x</i> kg | Frequency $f$ |
|----------------|-------------------------|---------------|
| 0.0 - 1.0      | 0.50                    | 1             |
| 1.0 - 2.0      | 1.50                    | 6             |
| 2.0 - 2.5      | 2.25                    | 60            |
| 2.5 - 3.0      |                         | 280           |
| 3.0 - 3.5      | 3.25                    | 820           |
| 3.5 - 4.0      | 3.75                    | 320           |
| 4.0 - 5.0      | 4.50                    | 10            |
| 5.0 - 6.0      |                         | 3             |

[You may use  $\Sigma f x = 4841$  and  $\Sigma f x^2 = 15\ 889.5$ ]

(**a**) Write down the missing midpoints in the table above.

(**b**) Calculate an estimate of the mean birth weight.

[ 2 marks ]

[ 2 marks ]

(c) Calculate an estimate of the standard deviation of the birth weight.

(**d**) Use interpolation to estimate the median birth weight.

[ 2 marks ]

(e) Describe the skewness of the distribution. Give a reason for your answer.

[ 2 marks ]

## S1 Examination Question from January 2011 Q5

On a randomly chosen day, each of the 32 students in a class record the time, t minutes to the nearest minute, they spent on their homework. The data for the class is summarised in the following table.

| Time, <i>t</i> | Number of students |
|----------------|--------------------|
| 10 - 19        | 2                  |
| 20 - 29        | 4                  |
| 30 - 39        | 8                  |
| 40 - 49        | 11                 |
| 50 - 69        | 5                  |
| 70 - 79        | 2                  |

(**a**) Use interpolation to estimate the value of the median.

[ 2 marks ]

Given that

 $\Sigma t = 1414$  and  $\Sigma t^2 = 69378$ 

(**b**) find the mean and the standard deviation of the times spent by the students on their homework.

[ 3 marks ]

(c) Comment on the skewness of the distribution of the times spent by the students on their homework.
Give a reason for your answer.

[2 marks]

S1 Examination Question from May 2009 Q4

A researcher measures the foot lengths of a random sample of 120 ten-year-old children. the lengths are summarised in the table below;

| Foot length, <i>l</i> , (cm) | Number of children |
|------------------------------|--------------------|
| 10 ≤ <i>l</i> < 12           | 5                  |
| 12 ≤ <i>l</i> < 17           | 53                 |
| 17 ≤ <i>l</i> < 19           | 29                 |
| 19 ≤ <i>l</i> < 21           | 15                 |
| 21 ≤ <i>l</i> < 23           | 11                 |
| 23 ≤ <i>l</i> < 25           | 7                  |

(**a**) Use interpolation to estimate the median of this distribution.

[ 2 marks ]

(**b**) Calculate estimates for the mean and the standard deviation of these data.

[ 6 marks ]

One measure of skewness is given by

Coefficient of skewness =  $\frac{3 (mean - median)}{standard deviation}$ 

(c) Evaluate this coefficient and comment on the skewness of these data

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk