A-level Statistics : Year 1

Partitioning Data

7.1 Coding of Mean and Standard Deviation

Example

The number of pages in six randomly chosen novels was recorded as being;

The Shipping News
Annie Proulx
337
Deadly Décisions
Birdsong
My Legendary GirlFriend
Enduring Love
Black Notice

Kathy Reichs
333
Sebastian Faulks 305
Mike Gayle 353
Ian McEwan 249
Patricia Cornwell 413
(i) Calculate the Mean and Standard Deviation of this original data, μ_{o} and σ_{o}

				Data, x	x^{2}
	337				
333	113569				
	305				
	353				
	249				
	413				
	1990				

$$
\begin{aligned}
& \mu=\frac{\Sigma x}{f} \quad \text { (Use the exact value in subsequent calculations) } \\
& \sigma=\sqrt{\frac{\Sigma x^{2}}{f}-\mu^{2}}
\end{aligned}
$$

The idea of coding is to find a transformation of the form,

$$
X_{t}=\frac{x_{o}-a}{b}
$$

that can be applied to the original data.
In this equation

- x_{o} is the original data
- $\quad a$ and b are suitable constants
- $\quad X_{t}$ is the transformed data

To be useful, the transformed data should be easier to manipulate and, in particular, finding the mean and standard deviation of the transformed data μ_{t} and σ_{t} should be a relatively easy task.
These are then decoded to give the mean and standard deviation of the original data.
(ii) Code the example data using the transformation

$$
X_{t}=\frac{x_{o}-301}{4}
$$

x_{o}	X_{t}	X_{t}^{2}
337		
333		
305		
353		
249		
413		
Σ		

(iii) For the coded (transformed) data find the mean and the standard deviation. That is, find μ_{t} and σ_{t}
(iv) Use the value of the the mean of the coded data, and the fact that it was coded using the coding

$$
X_{t}=\frac{x_{o}-301}{4}
$$

to find the mean, μ_{o}, of the original data.
(\mathbf{v}) Use the value of the the standard deviation of the coded data, and the fact that it for coded using the coding

$$
X_{t}=\frac{x_{o}-301}{4}
$$

to find the standard deviation, σ_{o}, of the original data.

7.2 Summary

For data that has been coding using a transformation of the form,

$$
X_{t}=\frac{x_{o}-a}{b}
$$

and given the mean and standard deviation of the coded (transformed) data, μ_{t} and σ_{t} the original mean and standard deviation is retrieved using the facts that,

$$
\begin{gathered}
u_{o}=b \mu_{t}+a \\
\sigma_{o}=b \sigma_{t}
\end{gathered}
$$

7.3 Exercise

Question 1

Data is coded using the transformation

$$
y=\frac{x-250}{80}
$$

The mean of the coded data is 4.5
The standard deviation of the coded data is 3.2
Find the mean and the standard deviation of the original data.

Question 2

The annual income, I, of 100 IT consultants was recorded. The data were coded using

$$
y=\frac{I-400}{10000}
$$

and the following summations were obtained;

$$
\Sigma y=887 \quad \Sigma y^{2}=8065
$$

(i) Calculate the mean and the standard deviation of the coded data.
(ii) Calculate the mean and the standard deviation of the original data.
(iii) Most incomes will be within two standard deviations of the mean. Calculate $\mu \pm 2 \times \sigma$ and so state the values between which most incomes lie.

Question 3

Mrs Crump gathers information about the times taken by 29 girls to get from Emma Darwin Hall to Kingsland Hall for breakfast one morning.

	N° girls	Mid-Interval minutes	Coding $y=(t-7) / 3$			
minutes	f	t	y	y^{2}	$f y$	$f y^{2}$
$2 \leqslant t<6$	5					
$6 \leqslant t<8$	14					
$8 \leqslant t<12$	8					
$12 \leqslant t<20$	2					

(i) Fill in the empty cells on the table above, where the data is coded using

$$
y=\frac{t-7}{3}
$$

(ii) Use $\Sigma f y$ to find mean and $\Sigma f y^{2}$ to find standard deviation of the coded data.
(iii) Find the mean and standard deviation of the original data.

Question 4

S1 Examination Question from January 2012 Q4
The marks, x, of 45 students randomly selected from those students who sat a mathematics examination are shown below.

36	39	39	40	41	42	42	43	44	45
46	46	46	48	50	52	53	53	54	54
55	55	56	57	57	59	60	60	60	60
61	63	64	64	64	65	65	66	67	68
69	71	72	73	73					

(a) Write down the modal mark of these students.
(b) Find the values of the lower quartile, the median and the upper quartile.

For these students $\Sigma x=2497$ and $\Sigma x^{2}=143369$
(c) Find the mean and the standard deviation of the marks of these students.
(d) Describe the skewness of the marks of these students, giving a reason for your answer.
[2 marks]

The mean and the standard deviation of the marks of all the students who sat the examination where 55 and 10 respectively. The examiners decided that the total mark of each student should be scaled by subtracting 5 marks and then reducing the mark by a further 10%.
(e) Find the mean and the standard deviation of the scaled marks of all the students.

