2.6 Homework

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 35

Question 1

Solve the following trigonometric equation for x between 0° and 360°

$$
\sin \left(x-30^{\circ}\right)=\frac{1}{2} \cos x
$$

Question 2

(i) Study the following diagram.

The aim is to work out the exact size of angle $C E D$, and then deduce an exact value for $\tan C E D$ that will involve a square root.

The green triangle, $\triangle A B C$ is isosceles and right angled with sides $A B$ and $B C$ both of length 1 . The red triangle, $\triangle A C E$, is also isosceles with sides $A C$ and $A E$ having the same length. The blue triangle, $\triangle E D C$ is right angled. All three triangles form a rectangle, $A B D E$, as shown.

Determine the exact value of angle $C E D$, and the exact value of $\tan C E D$.
(ii) Solve the following trigonometric equation for x between 0° and 360°

$$
\cos \left(x-45^{\circ}\right)=\cos x
$$

Question 3

Solve the following trigonometric equation for x between 0° and 360°

$$
3 \sin \left(x+10^{\circ}\right)=4 \cos \left(x-10^{\circ}\right)
$$

Question 4

Prove that, $\quad \frac{\tan (C+D)-\tan C}{1+\tan (C+D) \tan C}=\tan D$
HINT: Let $(C+D)=A$ and $C=B$, then use the tan addition formula backwards.

Question 5

Given that

$$
\sin (x-\alpha)=\cos (x+\alpha)
$$

prove that

$$
\tan x=1
$$

