Lesson 4

A-Level Pure Mathematics : Year 2 Trigonometric Identities

4.1 Homework

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Here is a table of exact trigonometric values that most mathematicians know "off by heart";

Exact values table:

	0°	30°	45°	60°	90°
sin $ heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan θ	0	$\frac{\sqrt{3}}{3}$	1	√3	Not Defined

Show, using the formula for sin(A - B) and the table of exact trigonometric values that

$$\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Remember to start, LHS =

(a)	Write down the exact value of	(i)	sin 45°
		(ii)	$cos 45^{\circ}$

[2 marks]

(**b**) On one graph sketch the curves of y = sin x and y = cos x for $0^{\circ} \le x \le 360^{\circ}$

[2 marks]

(c) Use the fact that $\sin 45^\circ = \cos 45^\circ$ to prove that $\sin (\theta + 45^\circ) = \cos (\theta - 45^\circ)$

[5 marks]

Prove that,	cos A	sin A	_	cos(A + B)
	sin B	cos B	_	sin B cos B

[5 marks]

Prove that;

$$\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B$$

Prove that,
$$\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta$$

[5 marks]

Prove that;

$$2\cos^3\theta\sin\theta + 2\sin^3\theta\cos\theta = \sin 2\theta$$

Prove that,	sin 30		$\cos 3\theta$	_	\mathbf{r}
	$\sin\theta$	_	$\cos\theta$	_	2

[6 marks]

This document is Licensed for use by staff and students at **Shrewsbury School, England** To obtain a Licence please visit www.NumberIsAll.com © 2020 Number Is All