A-Level Pure Mathematics : Year 2 Trigonometric Identities

5.1 The Reciprocal Trigonometric Functions

The reciprocal trig functions are;

$$sec \ \theta = \frac{1}{\cos \theta}$$
 $csc \ \theta = \frac{1}{\sin \theta}$ $cot \ \theta = \frac{1}{\tan \theta}$

A further two new identities, derived from an old favourite immediately follow; $cos^2 \theta + sin^2 \theta = 1$ This is the old favourite which yields, $1 + tan^2 \theta = sec^2 \theta$ upon dividing through the old favourite by $cos^2 \theta$, and, $cot^2 \theta + 1 = csc^2 \theta$ upon dividing through the old favourite by $sin^2 \theta$

5.2 Example

Prove that, $\csc \theta (\cos \theta \cot \theta + \sin \theta) - 1 = \cot^2 \theta$

Teaching Video : http://www.NumberWonder.co.uk/v9040/5.mp4

After watching the Teaching Video, write out the proof,

(F

5.3 Proofs Strategy

When tackling proof questions involving sec θ , csc θ and cot θ ;

 If no powers are involved, change sec θ, csc θ and cot θ into the more familiar trigonometric ratios using

$$\sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{1}{\tan \theta}$$

• As soon as powers occur, especially a square, try to make use of any of,

$$cos^{2} \theta + sin^{2} \theta = 1$$

$$1 + tan^{2} \theta = sec^{2} \theta$$

$$cot^{2} \theta + 1 = csc^{2} \theta$$

• It follows from the fact that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ that $\cot \theta = \frac{\cos \theta}{\sin \theta}$

5.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Prove that, $\sin \theta (\csc \theta - \sin \theta) + \cos \theta (\sec \theta - \cos \theta) = 1$

Prove that,
$$\frac{\sin\theta \ (\sin\theta - \csc\theta)}{\cos\theta \ (\cos\theta - \sec\theta)} = \cot^2\theta$$

[3 marks]

Question 3

 $\frac{(1 - \sin \theta) (1 + \sin \theta)}{(1 - \cos \theta) (1 + \cos \theta)} = \cot^2 \theta$

Prove that, $\sec^2 \theta - \tan^2 \theta + \csc^2 \theta - \cot^2 \theta = 2$

[3 marks]

Question 5

Prove that, $\sec \theta \ (\cos \theta + \sin \theta \tan \theta) = \sec^2 \theta$

$$\frac{1}{\csc \theta \ (\cos \theta \cot \theta + \sin \theta)} = \sin^2 \theta$$

[3 marks]

Question 7

Prove that,
$$\frac{1}{(\tan^2 \theta + 1)} + \frac{1}{(\cot^2 \theta + 1)} = 1$$

Prove that, $(sec^2 \theta - 1) (csc^2 \theta - 1) = 1$

[3 marks]

Question 9

Prove that, $(\sec \theta + \tan \theta) (\sec \theta - \tan \theta) = 1$

Prove that,
$$\frac{\cos\theta}{\sqrt{1 + \tan^2\theta}} + \frac{\sin\theta}{\sqrt{1 + \cot^2\theta}} = 1$$

Prove this identity, $\cot \theta - \tan \theta = 2 \cot 2\theta$

[5 marks]

Question 12

Prove this identity, $\cot \theta + \tan \theta = 2 \csc 2\theta$