5.1 The Reciprocal Trigonometric Functions

The reciprocal trig functions are;

$$
\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

A further two new identities, derived from an old favourite immediately follow;
$\cos ^{2} \theta+\sin ^{2} \theta=1 \quad$ This is the old favourite which yields,
$1+\tan ^{2} \theta=\sec ^{2} \theta \quad$ upon dividing through the old favourite by $\cos ^{2} \theta$, and,
$\cot ^{2} \theta+1=\csc ^{2} \theta \quad$ upon dividing through the old favourite by $\sin ^{2} \theta$

5.2 Example

Prove that, $\quad \csc \theta(\cos \theta \cot \theta+\sin \theta)-1=\cot ^{2} \theta$

Teaching Video :http://www.NumberWonder.co.uk/v9040/5.mp4

After watching the Teaching Video, write out the proof,

19

5.3 Proofs Strategy

When tackling proof questions involving $\sec \theta, \csc \theta$ and $\cot \theta$;

- If no powers are involved, change $\sec \theta, \csc \theta$ and $\cot \theta$ into the more familiar trigonometric ratios using

$$
\sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta} \quad \text { and } \quad \cot \theta=\frac{1}{\tan \theta}
$$

- As soon as powers occur, especially a square, try to make use of any of,

$$
\begin{gathered}
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
1+\tan ^{2} \theta=\sec ^{2} \theta \\
\cot ^{2} \theta+1=\csc ^{2} \theta
\end{gathered}
$$

- It follows from the fact that $\tan \theta=\frac{\sin \theta}{\cos \theta}$ that $\cot \theta=\frac{\cos \theta}{\sin \theta}$

5.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available $: 40$

Question 1

Prove that, $\quad \sin \theta(\csc \theta-\sin \theta)+\cos \theta(\sec \theta-\cos \theta)=1$

Question 2

Prove that, $\quad \frac{\sin \theta(\sin \theta-\csc \theta)}{\cos \theta(\cos \theta-\sec \theta)}=\cot ^{2} \theta$

Question 3

Prove that, $\frac{(1-\sin \theta)(1+\sin \theta)}{(1-\cos \theta)(1+\cos \theta)}=\cot ^{2} \theta$

Question 4

Prove that, $\quad \sec ^{2} \theta-\tan ^{2} \theta+\csc ^{2} \theta-\cot ^{2} \theta=2$

Question 5

Prove that, $\quad \sec \theta(\cos \theta+\sin \theta \tan \theta)=\sec ^{2} \theta$

Question 6

Prove that, $\quad \frac{1}{\csc \theta(\cos \theta \cot \theta+\sin \theta)}=\sin ^{2} \theta$

Question 7
Prove that, $\quad \frac{1}{\left(\tan ^{2} \theta+1\right)}+\frac{1}{\left(\cot ^{2} \theta+1\right)}=1$

Question 8

Prove that, $\quad\left(\sec ^{2} \theta-1\right)\left(\csc ^{2} \theta-1\right)=1$

Question 9
Prove that, $\quad(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$

Question 10

Prove that, $\quad \frac{\cos \theta}{\sqrt{1+\tan ^{2} \theta}}+\frac{\sin \theta}{\sqrt{1+\cot ^{2} \theta}}=1$

Question 11

Prove this identity, $\quad \cot \theta-\tan \theta=2 \cot 2 \theta$

Question 12

Prove this identity, $\quad \cot \theta+\tan \theta=2 \csc 2 \theta$

